雲林離島式基礎產業園區開發計畫施工期間環境監測 114 年第3季報告

(期間為114年7月至114年9月)

開發單位: 經濟部產業園區管理局

執行監測單位: 環興科技股份有限公司

國立成功大學水工試驗所

提送日期:中華民國114年10月

雲林離島式基礎產業園區開發計畫施工期間環境監測 114年第3季報告

(期間為114年7月至114年9月)

目 錄

第 () 章 前言	
0.1 依據	. 0-1
0.2 監測調查執行期間	. 0-2
0.3 執行監測調查單位	. 0-2
第一章 監測內容概述	
第一章 監測內容概述	. 1-1
1.1 工程進度	. 1-1
1.2 監測調查情形概述	. 1-2
1.3 監測計畫概述	1-22
1.4 監測位址	1-31
1.4.1 空氣品質	1-31
1.4.2 噪音及振動	1-31
1.4.3 交通流量	1-33
1.4.4 陸域生態	1-34
1.4.5 地下水水質	1-37
1.4.6 陸域水質	1-39
1.4.7 河口水質	1-40
1.4.8 海域水質	1-41
1.4.9 海域生態	1-42
1.4.10 漁業經濟	1-45
1.4.11 海域地形	1-46
1.4.12 海象	1-46
1.5 品保/品管作業措施概要	1-47
1.5.1 空氣品質	1-47
1.5.2 噪音	1-54
1.5.3 振動	1-54
1.5.4 交通量	1-54
1.5.5 陸域生態	1-58
1.5.6 河口、海域、底泥、地下水水質	1-61
157 海域生能	1-80

1.5.8 海域地形	
1.5.9 海象	1-88
第二章 本季監測結果數據分析	
2.1 空氣品質	2-1
2.2 噪音	2-11
2.3 振動	2-14
2.4 交通量	2-17
2.4.1 交通量及道路服務水準	2-17
2.5 陸域生態	2-22
2.5.1 陸域動物生態監測	2-22
2.5.2 陸域植物生態監測	2-30
2.6 地下水水質	2-45
2.6.1 本季監測調查結果	2-45
2.7 陸域水質	2-49
2.8 河口水質	2-54
2.9 海域水質	2-62
2.9.1 水質部份	2-62
2.9.2 底質部份	2-91
2.10 海域生態	2-99
2.10.1 浮游生物及水質調查	2-99
2.10.2 亞潮帶底棲生物調查	2-118
2.10.3 潮間帶底棲生物調查	2-125
2.10.4 漁獲生物種類調查	2-130
2.10.5 刺網漁獲水產生物體中重金屬濃度調	查2-139
2.10.6 仔稚魚調查	2-158
2.11 漁業經濟	2-165
2.11.1 漁業經濟	
2.11.2 養殖面積、種類、產量及產值	2-175
2.11.3 雲林漁業統計年報資料分析	
2.12 海域地形	
2.13 海象	2-193
第三章 檢討與建議	
3.1 監測結果綜合檢討分析	3-1
3.1.1 空氣品質	
3.1.2 噪音	
3.1.3 振動	
3.1.4 交通流量	
3.1.5 陸域生態	

	3.1.6	地下水水質	3-51
	3.1.7	陸域水質	3-62
	3.1.8	河口水質	3-75
	3.1.9	海域水質	3-112
	3.1.10	海域生態	3-150
	3.1.11	漁業經濟	3-152
	3.1.12	海域地形	3-173
	3.1.13	海象	3-226
3	.2 監	則結果異常現象因	應對策3-227

附錄

附錄一 檢測執行單位之認證資料

附錄二 採樣與分析方法

附錄三 品保/品管查核記錄

附錄四 原始數據(監測結果)

附錄五 「雲林離島式基礎產業園區開發計畫施工期間環境監測」歷年環境部審查意見暨園管局辦理情形說明對照表

附錄六 出海證明資料

附錄七 環境監測照片

圖 目 錄

啚	1.2-1 離島產業園區開發計畫施工期間環境監測計畫專案工作隊工作 組織圖	1-3
昌	1.4-1 雲林離島產業園區施工期間物化環境監測站位置圖	
昌	1.4-2 雲林離島產業園區施工期間陸域生態環境監測站位置圖	1-35
昌	1.4-3 離島產業園區各地下水監測井及民井位置分佈圖	
昌	1.4-4 雲林離島產業園區施工期間陸域水質監測站位置圖	1-39
昌	1.4-5 雲林離島產業園區海域及河口調查點位置圖	
昌	1.4-6 本季雲林離島河口至海域水質調查點位	
昌	1.4-7 海域現場調查範圍及測站位置圖	
昌	1.4-8 雲林縣離島式基礎產業園區沿海仔稚魚測站	1-44
昌	1.5.7-1 仔稚魚網示意圖	1-85
昌	1.5.9-1 波浪監測資料品管流程	1-89
昌	1.5.9-2 海流監測資料品管流程	1-90
啚	2.1-1 114 年度第3季各測站一氧化碳(CO)最高8小時平均值及最高小時值比較分析圖	2-7
啚	2.1-2 114 年度第 3 季各測站二氧化硫(SO2)最高小時值比較分析圖	2-7
昌	2.1-3 114 年度第 3 季各測站氮氧化物(NOx)日平均值比較分析圖	2-7
昌	2.1-4 114 年度第 3 季各測站二氧化氮(NO2)最高小時值比較分析圖	2-8
昌	2.1-5 114 年度第 3 季各測站臭氧(O3)最高 8 小時平均值及最高小時值比較分析圖	2-8
昌	2.1-6 114 年度第 3 季各測站總碳氫化合物(THC)日平均值及最高小時值比較分析圖	2-8
昌	2.1-7 114 年度第 3 季各測站非甲烷碳氫化合物(NMHC)日平均值及最高小時值比較分析圖	2-9
昌	2.1-8 114 年度第 3 季各測站 TSP 24 小時值比較分析圖	2-9
昌	2.1-9 114 年度第 3 季各測站 PM10 日平均值比較分析圖	2-9
昌	2.1-10 114 年度第 3 季各測站落塵量平均值比較分析圖	
昌	2.2-1 安西府 114 年第 3 季噪音監測成果分析圖及逐時變化圖	2-12
昌	2.2-2 海豐橋 114 年第 3 季噪音監測成果分析圖及逐時變化圖	2-12
昌	2.2-3 崙豐國小 114 年第 2 季噪音監測成果分析圖及逐時變化圖	2-12
昌	2.2-4 海口橋 114 年第 3 季噪音監測成果分析圖及逐時變化圖	2-13
昌	2.2-5 五條港出入管制站 114 年第 3 季噪音監測成果分析圖及逐時變化圖	2-13
昌	2.3-1 安西府 114 年度第 3 季振動監測成果分析圖及逐時變化圖	2-15
啚	2.3-2 海豐橋 114 年度第 3 季振動監測成果分析圖及逐時變化圖	2-15
啚	2.3-3 崙豐國小 114 年度第 3 季振動監測成果分析圖及逐時變化圖	2-15
	2.3-4 海口橋 114 年度第 3 季振動監測成果分析圖及逐時變化圖	
昌	2.3-5 五條港出入管制 114 年度第 3 季振動監測成果分析圖及逐時變化圖	2-16
昌	2.4.1-1 本季各測站交通流量(PCU/日)調查結果分析圖	
	2.5.2-1 陸域植物生態秋季監測新吉濁水溪口樣區上層植物分布圖	
昌	2.5.2-2 陸域植物生態秋季監測新吉濁水溪口魚塭樣區下層植物分布圖	
昌	2.5.2-3 陸域植物生態秋季監測台西三姓寮樣區上層植物分布圖	
昌	2.5.2-4 陸域植物生態秋季監測台西三姓寮樣區下層植物分布圖	
•	2.5.2-5 陸域植物生態秋季監測台西五塊厝樣區上層植物分布圖	
	2.5.2-6 陸域植物生態秋季監測台西五塊厝樣區下層植物分布圖	
	2.5.2-7 陸域植物生態秋季監測林厝寮木麻黃造林地樣區上層植物分布圖	
	2.5.2-8 陸域植物生態秋季監測林厝寮木麻黃造林地樣區下層植物分布圖	
	2.5.2-9 陸域植物生態秋季監測林厝寮混合造林地樣區上層喬木分布圖	
昌	2.5.2-10 陸域植物生態秋季監測林厝寮混合造林地樣區下層地被分布圖	2-41

昌	2.5.2-11	陸域植物生態秋季監測台塑木麻黃造林地樣區上層植物分布圖	2-42
啚	2.5.2-12	陸域植物生態秋季監測台塑木麻黃造林地樣區下層植物分布圖	2-42
啚	2.5.2-13	陸域植物生態秋季監測台塑北門木麻黃混合造林地樣區上層植物分布圖	2-43
昌	2.5.2-14	陸域植物生態秋季監測台塑北門木麻黃混合造林地樣區下層植物分布圖	2-43
		陸域植物生態秋季監測北海埔新生地樣區植物分布圖	
		陸域植物生態秋季監測南海埔新生地樣區植物分布圖	
		· · · · · · · · · · · · · · · · · · ·	
		林縣麥寮鄉轄內重點水污染列管之資料	
		新興區潮間帶水質歷次調查結果	
圖		域斷面底質粒徑分布曲線	
		域潮間帶底質粒徑分布曲線	
		域底質粒徑分布曲線	
	2.10.1-1		
_		的變化圖	
昌	2.10.1-2	民國 114 年 7 月 17 日雲林縣台西鄉 20 米水深表層各測站中浮游動物之豐	
•		的變化圖	
昌	2.10.1-3	民國 114 年 7 月 17 日雲林縣台西鄉 20 米水深垂直各測站中浮游動物之豐	度及生物量
•		的變化圖	
啚	2.10.1-4	民國 114 年 7 月 17 日雲林縣台西鄉沿海各測線中浮游動物之豐度變化	
圖	2.10.1-5	民國 114 年 7 月 17 日雲林縣台西鄉沿海各測站浮游動物之出現百分率	
圖	2.10.1-6	民國 114 年 7 月 17 日雲林縣台西鄉沿海各測線蟹幼生、蝦幼生、魚卵和	
		度變化	
啚	2.10.1-7	民國 114 年 7 月 17 日雲林縣台西鄉沿海各測站中浮游植物之主要種類組	
		變化圖	
昌	2.10.1-8	歷年海域中之浮游動物豐度和浮游植物密度與溫度之點圖	2-116
昌	2.10.1-9	歷年海域中之浮游動物豐度和浮游植物密度與 pH 之點圖	2-117
圖	2.10.2-1	民國 114 年第 3 季(7 月 17 日)離島產業園區亞潮帶各測站小型底棲動物之	
			2-123
昌	2.10.2-2	民國 114 年第 3 季(7 月 17 日)離島產業園區亞潮帶各測站小型底棲動物之	.豐度變化
			2-123
昌	2.10.2-3		
			2-124
昌	2.10.3-1	民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站小型底棲生物之	
			2-128
昌	2.10.3-2	民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站小型底棲生物之	.豐度變化
			2-128
啚	2.10.3-3	民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站小型底棲生物之	
啚	2.10.4-1	雲林海域民國 114 年第 3 季刺網作業之漁獲重量百分比組成	2-132
啚	2.10.4-2	雲林海域民國 114 年第 3 季刺網作業之漁獲數量百分比組成	2-135
啚	2.10.5-1	114年7月21日雲林縣台西鄉外海水產生物體內砷含量變化圖。	2-146
啚	2.10.5-2	114年7月21日雲林縣台西鄉外海水產生物體內鎘含量變化圖,虛線表示	r ANZFA 魚
		類之食用安全限值為 Cd<0.2 mg/kg wet wt. 魚肉濃度小於偵測下限 0.025	mg/kg wet wt
		故不列圖顯示	
啚	2.10.5-4	114年7月21日雲林縣台西鄉外海水產生物體內鋅含量變化圖,虛線表示	
		蟹類之食用安全限值為 Zn<150 mg/kg wet wt	2-149

圖 2.10.5-5	民國 87 年 11 月起雲林台西鄉沿海海域產魚、蝦、蟹及螺肉中重金屬含量=	之歷年變化
圖 2.10.6-1	雲林縣離島式基礎產業園區沿海仔稚魚各大類組成	2-160
圖 2.10.6-2	雲林縣離島式基礎產業園區沿海仔稚魚各大類出現率	2-160
圖 2.10.6-3	雲林縣離島式基礎產業園區沿海仔稚魚豐度	2-161
圖 2.10.6-4	雲林縣離島式基礎產業園區沿海主要仔稚魚組成	2-161
圖 2.10.6-5	雲林縣離島式基礎產業園區沿海仔稚魚調查各測站出現科數	
圖 2.10.6-6	雲林縣離島式基礎產業園區沿海魚卵豐度	
圖 2.10.6-7	雲林縣離島式基礎產業園區沿海蝦幼生豐度	2-163
圖 2.10.6-8	雲林縣離島式基礎產業園區沿海蟹幼生豐度	
圖 2.11.1-1	雲林沿海地區刺網漁業主要漁獲產值和產量百分比圖	2-172
圖 2.11.3-1	95 年至 113 年漁獲總產量圖	
圖 2.11.3-2	95 年至 113 年近海及沿岸個別漁業產量圖	2-184
圖 2.11.3-3	95 年至 113 年近海及沿岸漁業總產量圖	2-185
圖 2.11.3-4	95 年至 113 年各類養殖漁業產量圖	2-186
圖 2.11.3-5	95 年至 113 年經濟性漁獲種類產量圖	2-187
圖 2.12-1	本區海域 2025 年海域地形圖	2-190
圖 2.12-2	本區長期(31年)地形變遷成果(1994~2025)	2-191
圖 2.12-3	本區地形測量變動量計算圖(2024~2025)	2-192
圖 2.13-1	MS 測站 2025 年 7~9 月各月實測潮位逐時變化圖	
	PZ 測站 2025 年 7~9 月各月實測潮位逐時變化圖	
圖 2.13-3	MS 測站 2025 年 7~9 月實測潮位頻譜與逐時變化圖	
圖 2.13-4	PZ 測站 2025 年 7~9 月實測潮位頻譜與逐時變化圖	
圖 2.13-5	雲林離島產業園區波浪現場調查測站位置圖	
圖 2.13-6	THL1 測站 2025 年 6 月~9 月波浪時序列	2-199
圖 2.13-7	觀測期間颱風中心路徑圖(資料來源 NOAA)	2-199
圖 2.13-8	歷年月平均及月最大示性波高時序列與分布範圍	2-200
圖 2.13-9	雲林離島產業園區海流現場調查測站位置圖	
圖 2.13-10	YLCW 測站 2025 年 6 月~9 月海流分量與流速流向時序列	
	YLCW 歷年流速中位數與主流向	
圖 2.13-12	YLCW 歷年最大流速與對應流向	2-204
圖 2.13-13	YLCW 歷年 M2 分潮流速長軸振幅與方位角	
圖 2.13-14	YLCW 歷年淨流流速與淨流流向	
圖 3.1.1-1	本計畫歷次一氧化碳(CO)最高小時值監測結果分析圖	3-11
圖 3.1.1-2	本計畫歷次二氧化硫(SO2)最高小時值監測結果分析圖	3-11
圖 3.1.1-3	本計畫歷次二氧化氮(NO2)最高小時值監測結果分析圖	3-12
圖 3.1.1-4	本計畫歷次臭氧(O3)最高小時值監測結果分析圖	
圖 3.1.1-5	本計畫歷次總碳氫化合物(THC)最高小時值監測結果分析圖	3-13
圖 3.1.1-6	本計畫歷次非甲烷碳氫化合物(NMHC)最高小時值監測結果分析圖	
圖 3.1.1-7	本計畫歷次 TSP 24 小時值監測結果分析圖	
圖 3.1.1-8	本計畫歷次 PM10 日平均值監測結果分析圖	
圖 3.1.1-9	本計畫歷次落塵量監測結果分析圖	
圖 3.1.2-1	本計畫歷次噪音 Lv 早監測結果分析圖	
圖 3.1.2-2	本計畫歷次噪音 Lv 日監測結果分析圖	
圖 3.1.2-3	本計畫歷次噪音 Lv 晚監測結果分析圖	
•		

啚	3.1.2-4	本計畫歷次噪音 Lv 夜監測結果分析圖	3-33
置	3.1.3-1	本計畫歷次振動 Lv10 日監測結果分析圖	3-34
昌	3.1.3-2	本計畫歷次振動 Lv10 夜監測結果分析圖	3-34
置	3.1.4-1	本計畫歷次交通量監測結果分析圖	
置	3.1.6-1	導電度歷年濃度測值變化	3-53
置	3.1.6-2	總溶解固體物歷年濃度測值變化	3-54
置	3.1.6-3	氯鹽歷年濃度測值變化	3-55
置	3.1.6-4	氟鹽歷年濃度測值變化	3-56
置	3.1.6-5	氨氮歷年濃度測值變化	3-57
昌	3.1.6-6	錳歷年濃度測值變化	3-58
昌	3.1.6-7	鐵歷年濃度測值變化	3-59
昌	3.1.6-8	鉛歷年濃度測值變化	3-60
昌	3.1.7-1	陸域水質歷次懸浮固體比較分析圖	3-71
昌	3.1.7-2	陸域水質歷次溶氧比較分析圖	3-72
啚	3.1.7-3	陸域水質歷次生化需氧量比較分析圖	3-73
啚	3.1.7-4	陸域水質歷次氨氮比較分析圖	3-74
啚	3.1.8-1	離島產業園區陸域河口歷年水質變化圖	
啚	3.1.9-1	離島產業園區海域歷年水質變化圖(pH)	3-119
啚	3.1.9-2	離島產業園區海域歷年水質變化圖(溫度)	3-119
啚	3.1.9-3	離島產業園區海域歷年水質變化圖(DO)	3-120
啚	3.1.9-4	離島產業園區海域歷年水質變化圖(BOD)	3-120
昌	3.1.9-5	離島產業園區海域歷年水質變化圖(SS)	
昌	3.1.9-6	離島產業園區海域歷年水質變化圖(濁度)	3-122
啚	3.1.9-7	離島產業園區海域歷年水質變化圖(大腸桿菌群)	
啚	3.1.9-8	離島產業園區海域歷年水質變化圖(NH3-N)	. 3-124
啚	3.1.9-9	離島產業園區海域歷年水質變化圖(NO3-N)	
啚	3.1.9-10	離島產業園區海域歷年水質變化圖(TP-P)	
啚	3.1.9-11	離島產業園區海域歷年水質變化圖(Phenol)	
啚	3.1.9-12	離島產業園區海域歷年水質變化圖(Grease)	
•	3.1.9-13		
	3.1.9-14		
•	3.1.9-15		
	3.1.9-16		
-	3.1.9-17	離島產業園區海域歷年水質變化圖(Zn)	
•	3.1.9-18	離島產業園區海域歷年水質變化圖(Cr)	
•	3.1.9-19		
•	3.1.9-20		
-	3.1.9-21	離島產業園區海域歷年水質變化圖(As)	
•	3.1.9-22	離島產業園區海域歷年水質變化圖(NO2-N)	
•	3.1.9-23	離島產業園區海域歷年水質變化圖(氰化物)	
•	3.1.9-24		
	3.1.9-25	離島產業園區海域歷年水質變化圖(矽酸鹽)	
•	3.1.9-26	離島產業園區海域歷年水質變化圖(Co)	
•	3.1.9-27		
•	3.1.11-1	雲林縣沿海地區刺網漁法之 CPUE 及 IPUE 比較	
啚	3.1.11-2	牡蠣問卷戶 85~114 年單位產值變化圖(N.T.)	. 3-166

啚	3.1.11-3	鰻魚問卷戶 85~114 年單位收成量比較圖(Kg)	3-167
啚	3.1.11-4	鰻魚問卷戶 85~114 年單位產值變化圖(N.T.)	3-167
昌	3.1.11-5	文蛤混養問卷戶 85~114 年單位收成量比較圖(Kg)	
啚	3.1.11-6	文蛤混養問卷戶 85~114 年單位產值變化圖(N.T.)	3-168
昌	3.1.11-7	鱸魚問卷戶 111~114 年單位收成量比較圖(Kg)	3-169
昌	3.1.11-8	鱸魚問卷戶 111~114 年單位產值變化圖(N.T.)	3-169
啚	3.1.11-9	鯛魚問卷戶 111~114 年單位收成量比較圖(Kg)	3-170
昌	3.1.11-10	鯛魚問卷戶 111~114 年單位產值變化圖(N.T.)	3-170
昌	3.1.11-11	泰國蝦問卷戶 111~114 年單位收成量比較圖(Kg)	3-171
啚	3.1.11-12	泰國蝦問卷戶 111~114 年單位產值變化圖(N.T.)	3-171
啚	3.1.12-1	濁水溪河系古河道位置變遷示意圖	3-175
昌	3.1.12-2	濁水溪河系治導計畫示意圖	3-175
啚	3.1.12-3	雲嘉海岸沿岸砂洲南消(北港溪口)、北長(濁水溪口),砂洲南伸、	向陸側後退灘
		線變遷示意圖	
啚	3.1.12-4	河口三角洲灘線變遷機制示意圖	
啚	3.1.12-5	三條崙沙洲歷年衛星影像及實測 0m 灘線套疊圖	3-179
啚	3.1.12-6	三條崙沙洲最南端每年變遷位置	
啚	3.1.12-7	三條崙沙洲最南端每年變遷速率	
啚	3.1.12-8	歷年衛星影像及實測砂洲灘線套疊圖	
•		外傘頂洲最西端東移變化(1984~2024)	
		外傘頂洲最北端南移變化(1984~2024)	
	3.1.12-11	本區海域 1993 年海域地形圖	
	3.1.12-12	本區海域 1994 年海域地形圖(續)	
	3.1.12-13	, , , , , , , , , , , , , , , , , , , ,	
•	3.1.12-14		
	3.1.12-15		
•	3.1.12-16	本區海域 1999 年海域地形圖(續)	
•	3.1.12-17	, = , , , , , , , , , , , , , , , , , ,	
•	3.1.12-18	本區海域 2001 年海域地形圖(續)	
	3.1.12-19	, , , , , , , , , , , , , , , , , , , ,	
	3.1.12-20		
•	3.1.12-21		
•	3.1.12-22	, = , , , , , , , , , , , , , , , , , ,	
•	3.1.12-23		
_,	3.1.12-24		
•	3.1.12-25		
•	3.1.12-26		
•	3.1.12-27		
_	3.1.12-28		
•	3.1.12-29		
•	3.1.12-30	, = , , , , , , , , , , , , , , , , , ,	
•	3.1.12-31	本區海域 2014 年海域地形圖(續)	
•	3.1.12-32	, = , , , , , , , , , , , , , , , , , ,	
•	3.1.12-33		
•	3.1.12-34		
宣	3.1.12-35	本區海域 2018 年海域地形圖(續)	3-207

圖 3.1.12-36	本區海域 2019 年海域地形圖(續)	3-208
圖 3.1.12-37	本區海域 2020 年海域地形圖(續)	3-209
圖 3.1.12-38	本區海域 2021 年海域地形圖(續)	3-210
圖 3.1.12-39	本區海域 2022 年海域地形圖(續)	3-211
圖 3.1.12-40	本區海域 2023 年海域地形圖(續)	3-212
圖 3.1.12-41	本區海域 2024 年海域地形圖(續)	3-213
圖 3.1.12-42	本區海域 2025 年海域地形圖(續)	3-214
圖 3.1.12-42	每 5 年海域地形水深侵淤變化圖(1996~2021)	3-217
圖 3.1.12-43	近五年每年海域地形水深侵淤變化圖(2020~2025)	3-218
圖 3.1.12-44	不同時期海域地形水深侵淤變化圖 (1996 年至 2024 年期間)	3-219
圖 3.1.12-45	1993 年至 2025 年等深線位置比較圖	3-221
圖 3.1.12-46	海域地形變化比較斷面位置圖	3-223
圖 3.1.12-47	地形測量斷面比較圖(A-A')	3-224
圖 3.1.12-48	地形測量斷面比較圖(B-B')	3-224
圖 3.1.12-49	地形測量斷面比較圖(C-C')	3-225
圖 3.1.12-50	地形測量斷面比較圖(D-D')	3-225

表目錄

表 1.1-1 本季施工工程進度	1-1
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表	1-4
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 1)	1-5
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 2)	1-6
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 3)	1-7
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 4)	
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 5)	1-9
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 6)	1-10
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 7)	1-11
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 8)	1-13
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 9)	1-14
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 10)	1-15
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 11)	1-16
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 12)	1-17
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 13)	1-18
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 14)	1-19
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 15)	1-20
表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 16)	1-21
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形	1-22
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 1)	1-23
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 2)	1-24
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 3)	1-25
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 4)	1-26
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 5)	1-27
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 6)	1-28
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 7)	1-29
表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 8)	1-30
表 1.4-1 本監測計畫施工期間陸域動物生態監測位置概述表	
表 1.4-2 本監測計畫施工期間陸域植物生態監測位置概述表	1-36
表 1.4-3 地下水監測井(含民井)基本資料	
表 1.5.1-1 空氣品質監測之各項品管要求	
表 1.5.1-2 空氣品質監測之各氣體分析儀器 ZERO 與 SPAN 之管制範圍	1-48
表 1.5.1-3 空氣品質分析之品保目標說明	1-50
表 1.5.1-4 空氣品質儀器校正頻率	1-51
表 1.5.1-4 空氣品質儀器校正頻率(續 1)	1-52
表 1.5.1-4 空氣品質儀器校正頻率(續 2)	1-53
表 1.5.4-1 噪音振動儀器校正頻率	1-55
表 1.5.5-1 Braun-Blanquet 植物社會特徵界定表	1-59
表 1.5.6-1 本計畫各檢驗項目的採樣容量與保存方法	1-63
表 1.5.6-2 本計畫各檢項之品管頻率及檢量線管制範圍	
表 1.5.6-2 本計畫各檢項之品管頻率及檢量線管制範圍(續 1)	
表 1.5.6-3 本計畫主要儀器維護校正項目及週期	
表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 1)	1-70
表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 2)	

表	1.5.6-3	本計畫主要儀器維護校正項目及週期(續3)	1-72
表	1.5.6-3		
表	1.5.6-4		
表	1.5.6-4	本計畫各檢測項目方法及依據(續 1)	1-75
表	1.5.6-5		
表	1.5.6-5	本計畫各檢測項目品質目標(續 1)	1-77
表	1.5.6-5		
•	1.5.8-1		
, -			
表	2.1-1	採樣時間風花圖表	2-4
表	2.1-1	採樣時間風花圖表(續 1)	2-5
•	2.1-2	114 年第 3 季空氣品質監測綜合成果	
•	2.2-1	114年第3季噪音各時段均能音量監測結果分析	
•	2.3-1	114 年第 3 季各時段 Lv ₁₀ 均能振動監測結果分析	
•	2.3-2	日本東京都道路交通及營建工程公害振動規制基準	
•	2.4.1-1		
•	2.4.1-2		
•	2.5.1-1	本季雲林離島產業園區監測哺乳類名錄及數量	
•	2.5.1-2		
•	2.5.1-3		
•	2.5.1-4		
•	2.5.1-5		
•	2.5.2-1		
•	2.5.2-2		
•	2.5.2-3		
•	2.5.2-4		
•	2.5.2-4		
•	2.5.2-6		
•	2.5.2-7		
		古空北门不顺東北台這杯地依四尚不监冽結末 本季採樣地下水水質分析數據統計表(114年7月28、29日)	
	2.7-1	台西、新興區河川水質污染指標(RPI)本季陸域河川水質監測結果	
•		本字陸域內川水貞監測結末 河川污染程度分類表	
•	2.7-3		
•	2.7-4	地面水體分類水質標準與海域環境分類及品質標準-環境基準表	
		本季底質重金屬與國內外其他海域沉積物重金屬濃度比較	
	2.10.1-		
	2.10.1-2		
	2.10.1-3		
•	2.10.1-		
表	2.10.1-		
	2 10 1	度	
表	2.10.1-		
یر	2.10.2	度	
表	2.10.2-		
		物量。	2-120

表 2.10.2-1	民國 114 年第 3 季(7 月 17 日)離島產業園區海域亞潮帶各測站小型底棲動物豐	
	物量(續 1)	
表 2.10.2-2	民國 114 年第 3 季(7 月 17 日)亞潮帶小型底棲動物各測站底棲生物相似度分析	2-124
表 2.10.3-1	民國 114 年第 3 季(7 月 23 日)離島產業園區海域潮間帶各測站小型底棲生物豐	度及生
	物量	2-127
表 2.10.3-2	民國 114 年第 3 季(7 月 23 日)潮間帶小型底棲生物各測站底棲生物相似度分析	2-129
表 2.10.3-3	民國 114 年第 3 季(7 月 23 日)潮間帶各測站底質粒徑與有機質分析	2-129
表 2.10.4-1	民國 114 年第 3 季雲林海域刺網漁獲生物重量及百分比組成	
表 2.10.4-2	民國 114 年第 3 季雲林海域刺網漁獲生物數量及百分比組成	2-134
表 2.10.4-3	民國 114 年第 3 季雲林海域刺網漁獲生物每公斤價格及售價組成	2-137
表 2.10.5-1	同步測定之國際標準樣品測值	2-142
表 2.10.5-2	民國 114 年 7 月 21 日雲林縣台西鄉外海底棲魚類、蟹類、文蛤及牡蠣中重金	屬含量
		2-143
表 2.10.5-2	民國 114 年 7 月 21 日雲林縣台西鄉外海底棲魚類、蟹類、文蛤及牡蠣中重金	屬含量
	(續 1)	2-144
表 2.10.5-2	民國 114 年 7 月 21 日雲林縣台西鄉外海底棲魚類、蟹類、文蛤及牡蠣中重金	屬含量
	(續 2)	
表 2.10.5-3	各國水產品中重金屬濃度之限值	2-150
表 2.10.5-4	民國 114 年 7 月 21 日雲林縣台西鄉外海底棲水產生物中 As、Cd、Cu 及 Zn 濃	慢度的最
	高、平均及中值,以國人平均漁產攝入量(280~441 g/週, Pan et al., 1999)計算-	每人每
	週所攝入之 As、Cd、Cu 及 Zn 的總量(mg),並與 WHO 所定 As(Inorganic)、C	d 的
	PTWI 值和 Cu 及 Zn 的 AWI 值比較	2-151
表 2.10.5-5	雲林縣台西鄉外海底棲水產生物體中肝臟和肌肉中重金屬含量間的比值	2-152
表 2.10.5-6	民國 114 年 7 月 21 雲林縣台西鄉外海底棲水產生物體中重金屬含量之高低順	序2-153
表 2.10.5-7	台灣附近海域食用魚類中之重金屬含量	2-153
表 2.10.5-8	台灣附近海域食用甲殼類中之重金屬含量	2-154
表 2.10.5-9	台灣附近海域食用貝類中之重金屬含量	2-154
表 2.10.5-10	世界各國食用魚類中之重金屬含量	2-155
表 2.10.5-11	世界各國食用甲殼類中之重金屬含量	2-155
表 2.10.5-12	世界各國食用螺貝類中之重金屬含量	2-156
表 2.10.6-1	雲林縣離島式基礎產業園區沿海仔稚魚豐度分布	2-159
表 2.10.6-2	雲林縣離島式基礎產業園區沿海仔稚魚各測站歧異度	2-162
表 2.10.6-3	雲林縣離島式基礎產業園區沿海仔稚魚各測站大類相似度	2-162
表 2.11.2-1	114 年雲林沿海牡蠣養殖標本戶記錄分析調查表	2-177
表 2.11.2-2	114 年雲林沿海鰻魚養殖標本戶記錄分析調查表	2-178
表 2.11.2-3	114 年雲林沿海文蛤混養養殖標本戶記錄分析調查表	2-179
表 2.11.2-4	114 年雲林沿海鱸魚養殖標本戶記錄分析調查表	2-179
表 2.11.2-5	114 年雲林沿海鯛魚養殖標本戶記錄分析調查表	2-179
表 2.11.2-6	114 年雲林沿海蝦類養殖標本戶記錄分析調查表	2-179
表 2.11.2-7	85~114 雲林沿海牡蠣養殖標本戶年產量產值表	2-180
表 2.11.2-8	85~114 雲林沿海鰻魚養殖標本戶年產量產值表	2-180
表 2.11.2-9	85~114 雲林沿海文蛤混養養殖標本戶年產量產值表	2-181
表 2.11.2-10		
表 2.11.2-11	111~114 雲林沿海鯛魚養殖標本戶年產量產值表	2-182
表 2.11.2-12	111~114 雲林沿海蝦類養殖標本戶年產量產值表	
表 2.13-1 多	麥寮潮位基準面高程統計(基隆中潮系統)	2-196

表 2.13-2	箔子寮潮位基準面高程統計(基隆中潮系統)	2-196
表 2.13-3	2025 年第三季波浪調查執行進度表	2-198
表 2.13-4	2025 年第三季波浪平均值、分佈範圍與極大值統計	2-198
表 2.13-5	2025 年第三季海流調查執行進度表	2-202
表 2.13-6	2025 年第三季海潮流流速流向統計	
表 3.1.1-1	歷年空氣品質監測結果綜合比較表	3-5
表 3.1.2-1	本計畫歷次噪音、振動及交通量監測結果綜合比較表	3-18
表 3.1.5-1	地被與藤本植物豐富度變化表	3-43
表 3.1.5-2	陸域生態監測歷年夏季種數變化統計表	3-46
表 3.1.7-1	歷次離島陸域(蚊港橋)水質監測結果	3-64
表 3.1.7-2	歷次離島陸域(新興橋)水質監測結果	3-65
表 3.1.7-3	歷次離島陸域(西湖橋)水質監測結果	3-66
表 3.1.7-4	陸域水質歷次監測結果污染程度變化	3-67
表 3.1.7-5	民國 79 年離島式基礎產業園區鄰近陸域排水水質調查表	3-70
表 3.1.9-1	離島海域水質於產業園區開發前環境背景平均濃度值與施工期間	平均濃度變化情形比
	較表	3-142
表 3.1.11-		
表 3.1.11-2		
表 3.2-1	上次監測之異常狀況及處理情形	3-228
表 3.2-2	本次監測之異常狀況及處理情形	3-232

第0章 前言

第 0 章 前言

0.1 依據

一. 規劃環評階段(79年~80年)

經濟部產業園區管理局(原經濟部工業局)為因應台灣地區未來石油化學、煉油、鋼鐵製造及電力等基礎工業建廠之需求,積極推動基礎工業重鎮之開發工作,以提供足夠之工業用地。第一階段自民國79年至80年6月,進行「可行性評估先期規劃」工作,完成區位評選、可行性調查研究、環境影響評估報告書及產業園區編定。由於雲林縣民意之支持、地方主管機關之良好配合,加上適宜之自然條件及技術可行性,本階段工作完成後,即報奉行政院以80.6.26台(80)經字第20839號函核准編定為雲林離島式基礎產業園區(以下簡稱離島產業園區或本產業園區),並經雲林縣政府以80.6.27府建工字第66785號函公告。

二. 六輕落腳於本產業園區(80.7~82.9)

第一階段工作完成後,由於本產業園區之開發計畫規模龐大,又屬於外海抽砂造地工作,砂源之取得極為重要,乃自民國 80 年 7 月至 81 年 9 月進行第二階段工作,即「抽砂造地規劃」工作,本階段進行期間,台塑企業六輕及六輕擴大建廠案奉准在本產業園區之麥寮區及海豐區設置,並提出興建麥寮工業專用港計畫,經濟部產業園區管理局(原經濟部工業局)檢討後,將原規劃之工業專用港港址移至北端之麥寮區,並經行政院 82 年 9 月 27 日以台(82)經字第 34380 號函核准調整產業園區編定範圍。

三. 調整編定範圍(82年起)

鑑於可行性先期規劃之構想原則已因時空環境而改變,及新增背景資料之補充而使產業園區之規劃須予以通盤檢討調整,經濟部產業園區管理局(原經濟部工業局)乃於民國82年1月至82年8月辦理整體規劃通盤檢討工作,檢討修正原規劃方案,尋求較佳之產業園區造地配置方案。

經過調整規劃之雲林離島式基礎產業園區其開發範圍已與原編定 之內容有些差異,且與原編定時之環境影響評估之內容有些變動,園管局(原工業局)爰依環境影響評估法及其施行細則之規定,研提「雲林離島式基礎產業園區調整編定範圍環境影響差異分析報告」,環境部(原環保署)於85年5月28日及85年7月5日針對該差異分析報告及補充說明書召開二次審查會議,經濟部產業園區管理局(原經濟部工業局)並 依該會議之結論研提修正本報告,修正本報告已經環境部(原環保署)核備。

由於環境影響評估工作之精神在於預防及避免對環境造成重大不利影響,並督促各相關單位於辦理開發計畫之同時即充分考慮環境因素。而藉由施工及營運階段之各項環境監測工作之執行,可確切掌握計畫區之環境品質狀況,以明瞭其變動情形。經濟部產業園區管理局(原經濟部工業局)在辦理離島式基礎產業園區開發之同時,為維護該地區之環境品質,亦依差異分析報告修正本之環境監測計畫辦理本施工期間之環境監測工作。其後工業局考量開發工程的推進、現況改變及數年來的監測與分析結果與經驗累積,經通盤檢討後研提修正監測計畫變更內容,於89年3月28日以工字第0890077050號函送環境部(原環保署)核備,環境部(原環保署)於91年1月29日召開本案之審查會,並於91年7月26日以環署綜字第0910051118號函准予核備。爰此施工期間環境監測工作,自92年起依據環境部(原環保署)核備之變更對照表內容辦理。

0.2 監測調查執行期間

雲林離島式基礎產業園區施工期間環境監測計畫自86年度開始執行, 本季為114年第3季,執行監測期間為114年7月~114年9月。

0.3 執行監測調查單位

本計畫主要監測項目包括:空氣品質、噪音、振動、交通流量、陸域生態、地下水水質、陸域水質、河口水質、海域水質、海域生態、漁業經濟、海域地形及海象等 13 項,其中地下水水質、陸域水質、河口水質、海域水質、海域地形及海象等 6 項係由國立成功大學水工試驗所(以下簡稱成大水工所)負責規劃與辦理,海域生態委託中山大學海洋研究學院負責規畫與辦理,漁業經濟委託臺灣海洋保育與漁業永續基金會負責規畫與辦理,強大水工所)負責規劃與辦理,海域生態委託台灣生物多樣性保育學會負責規劃與辦理,空氣品質質、噪音、振動、交通流量等 4 項委託環境部(原環保署)認可之檢測單位進行監測,報告之彙總則由環興公司負責,並另敦請國內著名之學者專額問公司共同參與執行。為期有效推動及執行本施工期間之環境監測調查計畫,經濟部產業園區管理局(原經濟部工業局)特成立一專案工作隊,共分 13 個工作組,以進行各項監測工作、品保與品管及報告撰寫。

第一章 監測內容概述

第一章 監測內容概述

1.1 工程進度

本計畫主要針對離島產業園區正進行施工中之新興區進行監測,本 季主要施工內容及工程進度詳表 1.1-1 所示。

表 1.1-1 本季施工工程進度

工		衣 1.1-1 本学施工	工程進及	
二.麥寮區排水箱涵交錯段工程 三.新興區南施工便橋工程 四.東河堤 E1 段、南海堤 D1 段及南施工場 地造地工程 五.東河堤 E2 段工程 六.南海堤 D2 段及圍堤造地工程 七.南施工道路工程 100 100 新興區 位.大.南海堤 D3 段工程 十一.Y2 海堤工程 100 100 中二.X3 隔堤工程 100 100 中二.次3 隔堤工程 100 100 中二.水道疏浚工程 100 100 中二.未二[3]、東二[4]區造地工程 100 100 中大.南施工便橋防蝕處理工程 100 100 中七.東二[5]區造地工程 100 100 中七.東二[5]區造地工程 100 100 100 中大.南施工運橋 100 100 100 100 中大.南施工運路拆除工程 100 100 100 100 中大.南施工道路拆除工程 100 100 100 100 中大.南施工道路拆除工程 100 100 100 100 100 100 100 100 100 100		工程項目	預定進度(%)	實際進度(%)
三.新興區南施工便橋工程 四.東河堤 E1 段、南海堤 D1 段及南施工場 地造地工程 五.東河堤 E2 段工程 六.南海堤 D2 段及圍堤造地工程 七.南施工道路工程 100 100 新興區(九.南海堤 D3 段工程 100 100 100 100 100 100 100 100 100 10		一.新興區養殖物清除工程	100	98.7
四.東河堤 E1 段、南海堤 D1 段及南施工場 地造地工程 五.東河堤 E2 段工程 六.南海堤 D2 段及圍堤造地工程 七.南施工道路工程 100 100 100 100 100 100 100 100 100 10		二.麥寮區排水箱涵交錯段工程	100	100
地造地工程		三.新興區南施工便橋工程	100	100
五.東河堤 E2 段工程		四.東河堤 E1 段、南海堤 D1 段及南施工場		
六.南海堤 D2 段及圍堤造地工程 100 100 新 典 一、東河堤 E3 段臨時施工便道工程 100 100 九.南海堤 D3 段工程 100 100 十.X1 隔堤工程 100 100 中一、Y2 海堤工程 100 100 中二、X3 隔堤工程 100 100 中二東二[3]、東二[4]區造地工程 100 100 十五.北施工便橋 100 100 十六.南施工便橋防蝕處理工程 100 100 十九.南施工便橋防蝕處理工程 100 100 十九.南施工道路拆除工程 100 100 十九.南施工道路拆除工程 100 100 十九.南施工道路拆除工程 100 100 十九.南施工道路拆除工程 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		地造地工程	100	100
新 地七.南施工道路工程 八.東河堤 E3 段臨時施工便道工程 九.南海堤 D3 段工程100 <td></td> <td>五.東河堤 E2 段工程</td> <td>100</td> <td>100</td>		五.東河堤 E2 段工程	100	100
四 八.東河堤 E3 段臨時施工便道工程		六.南海堤 D2 段及圍堤造地工程	100	100
四 八.東河堤 E3 段臨時施工便道工程	新	七.南施工道路工程	100	100
+.X1 隔堤工程	興	八.東河堤 E3 段臨時施工便道工程	100	100
十一.Y2 海堤工程	區	九.南海堤 D3 段工程	100	100
十一.Y2 海堤工程	山地	十.X1 隔堤工程	100	100
填 十二.X3 隔堤工程 100 100 十三.有才寮河口水道疏浚工程 100 100 十四.東二[3]、東二[4]區造地工程. 100 100 十五.北施工便橋 100 100 十六.南施工便橋防蝕處理工程 100 100 十七.東二[5]區造地工程 100 100 十八.新興水道南段及台西水道疏浚工程 100 100 十九.南施工道路拆除工程 100 100 二十.東二區敏都立颱風災損修復工程 80.0 100	砂	十一.Y2 海堤工程	100	100
十四.東二[3]、東二[4]區造地工程. 100 100 十五.北施工便橋 100 100 十六.南施工便橋防蝕處理工程 100 100 十七.東二[5]區造地工程 100 100 十八.新興水道南段及台西水道疏浚工程 100 100 十九.南施工道路拆除工程 100 100 二十.東二區敏都立颱風災損修復工程 80.0 100	填		100	100
十四.東二[3]、東二[4]區造地工程. 100 100 十五.北施工便橋 100 100 十六.南施工便橋防蝕處理工程 100 100 十七.東二[5]區造地工程 100 100 十八.新興水道南段及台西水道疏浚工程 100 100 十九.南施工道路拆除工程 100 100 二十.東二區敏都立颱風災損修復工程 80.0 100	地	十三.有才寮河口水道疏浚工程	100	100
十六.南施工便橋防蝕處理工程100十七.東二[5]區造地工程100十八.新興水道南段及台西水道疏浚工程100十九.南施工道路拆除工程100二十.東二區敏都立颱風災損修復工程80.0			100	100
十七.東二[5]區造地工程 100 十八.新興水道南段及台西水道疏浚工程 100 十九.南施工道路拆除工程 100 二十.東二區敏都立颱風災損修復工程 80.0 100 100 100		十五.北施工便橋	100	100
十八.新興水道南段及台西水道疏浚工程100100十九.南施工道路拆除工程100100二十.東二區敏都立颱風災損修復工程80.0100		十六.南施工便橋防蝕處理工程	100	100
十九.南施工道路拆除工程 100 100 二十.東二區敏都立颱風災損修復工程 80.0 100		十七.東二[5]區造地工程	100	100
二十.東二區敏都立颱風災損修復工程 80.0 100		十八.新興水道南段及台西水道疏浚工程	100	100
		十九.南施工道路拆除工程	100	100
		二十.東二區敏都立颱風災損修復工程	80.0	100
4. 1.00 0.00		累計總進度	14.51	14.51

1.2 監測調查情形概述

雲林離島式基礎產業園區施工期間環境監測計畫 114 年第 3 季監測調查工作執行情形,自民國 114 年 7 月至民國 114 年 9 月止,共進行空氣品質、噪音、振動、交通流量、陸域生態、地下水水質、陸域水質、河口水質、海域水質、海域生態、漁業經濟、海域地形及海象等 13 項,工作組織詳圖 1.2-1 所示,監測項目及監測結果摘要詳如表 1.2-1 所示。

本計畫除環評承諾監測計畫中所指定地點外,亦依開發工程的推進而彈性調整,水(底)質化學性濃度調查方面,因應本產業園區麥寮區已進入營運期,新興區、台西區目前實質上處於停工狀態,乃依據現況需求及歷年來的監測與分析結果綜合檢討監測內容,據以掌握來自內陸排水,以及麥寮區營運期間排放物質往南輸入對台西與新興區可能產生潛在之不利衝擊。河川方面除針對新虎尾溪(蚊港橋)、有才寮排水(新興橋)與廣尾溪(西湖橋)三條河川設置 3 處測站外,另於河川下游之河口區域定監測站,以瞭解雲林縣境內陸源污染經河川、排水路傳輸至近岸河區之水質情形。海域方面基於雲林台西沿海為臺灣牡蠣養殖產業最同區之水質情形。海域方面基於雲林台西沿海為臺灣牡蠣養殖產業最同三之水質情形。海域方面基於雲林台西沿海為臺灣牡蠣養殖產業最同三之水質情形。海域方面基於雲林台西沿海為臺灣牡蠣養殖產業局面之新與區之水質情形。海域方面基於雲林台西沿海為臺灣牡蠣養殖產業局面之報質是對導流提出口處量測現場水質項目,以作為若水質發生異常時,其來源判斷參考。此外配合新興區現況調整,本年度於新興區之新、舊虎溪出海處潮間帶區共設四個長期測點(N1、N3、N4、N5)進行水質調查。

依據環境法令公告台灣省「水區、水體分類及水質標準」中(臺灣省政府環境保護處八十三年四月七日八三環三字第一七○六四號公告),雲林縣各河川水質除濁水溪水區之河口劃定(玉峰大橋至出海口)為乙類水體,新虎尾溪發源地至出海口劃定為丙類水體外,在其餘各河口水質未劃定公告前,其監測項目將與最低陸域地面水體(河川、湖泊)公告之相關標準值做比較,其地面水體水質標準依據環境部最新公布修定之標準(環署水字第 1060071140 號,環境部(原行政院環境保護署)106.09.13 增修訂)。河口水質監測情形概述以退潮時水樣為主要討論對象,海域則依環境部於 107 年 2 月 13 日環署水字第 1070012375 號分布之海域環境分類及海洋環境品質標準做比較,本監測海域仍以甲類海域水質為標準,監測結果摘要如表 1.2-1 所示。

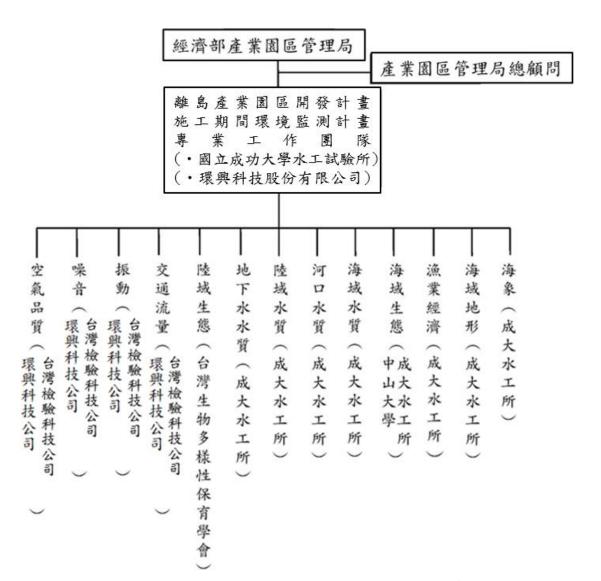


圖 1.2-1 離島產業園區開發計畫施工期間環境監測計畫專案工作隊工作 組織圖

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表

監測	K 1.2-1		中	
類別	監測項目		監測結果摘要	因應對策
	СО	最高 8小時值	0.10~0.20 ppm;符合標準值 9 ppm,且在歷次測 值範圍內。	
		最高 小時值	0.20~0.40 ppm;符合標準值 31 ppm,且在歷次 測值範圍內。	
	SO_2	日平均值	1.0~2.0 ppb; 無標準,且在歷次測值範圍內。	
	502	最高 小時值	2.0~8.0 ppb;符合標準值 65 ppb,且在歷次測值 範圍內。	
	NO_x	日平均值	6.0~11.0 ppb;無標準,且在歷次測值範圍內。	
	NO ₂		13.0~26.0 ppb;符合標準值 100 ppb,且在歷次 測值範圍內。	
空氣	O ₃	最高 8小時值	47.0~67.0 ppb;惟鎮安府及崙豐漁港駐在所超標,經比對鄰近環境部測站皆有超標情形;台西國小符合標準值 60 ppb,且在歷次測值範圍內。	持續監測
品質		最高 小時值	53.0~87.0 ppb;符合標準值 100 ppb,且在歷次測值範圍內。	
	ТНС	日平均值	2.14~2.57 ppm;無標準,且在歷次測值範圍內。	
		最高 小時值	2.72~3.90 ppm;無標準,且在歷次測值範圍內。	
		日平均值	0.04~0.08 ppm;無標準,且在歷次測值範圍內。	
	NMHC	最高 小時值	0.12~0.24 ppm;無標準,且在歷次測值範圍內。	
	TSP 24	小時值	32.0~67.0 μg/m³ ; 無標準,且在歷次測值範圍內。	
	PM ₁₀ E	平均值	17.0~29.0 μg/m³;符合標準值 75 μg/m³,且在歷 次測值範圍內。	
		月平均值	3.1~8.5 g/m²/月;無標準,大致在歷次測值範圍內。	
噪		β	十 禾 比 丁 然 人 品 立 签 划 插 准	壮 塘 野 河
音	$L_{\mathfrak{K}}$		本季皆可符合噪音管制標準。	持續監測
le.	L _夜		均符合日本標準 70 及 65 dB,且無異常值出現。	
振	L	4夜	均符合日本標準 65 及 60 dB,且無異常值出現。	
動	L ₁₀ (24小時)	均無異常值出現。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 1)

衣	1.2-1 芸林	谁岛式基礎產業園區施工期间本学品	1 例 用 炒 桃 延 秋 (演 1)
監測類別	監測項目	監 測 結 果 摘 要	因應對策
交通量	交通流量及道路 服務水準	本季之最高尖峰小時道路服務水準,除安西府 (二)、安西府(三)為B級及安西府(一)、崙豐國 小為C級自由車流外,其餘測站為A級自由 車流。各測站本季之監測結果與歷次調查結果 相較,均在歷次變動範圍內。	人員通勤對當地交通造成影響,台塑企業除限制大型車輛
陸	陸域動物生態 1.烏兩爬領 3.哈飛乳 4.蝴 5.蝴 類類類類類	1.哺乳類:本次共發現哺乳類3科6種,均為臺灣平地或低山的常見種類。東亞家蝠是本季出現頻度最高的物種。 2.鳥類:共計發現20科37種。麻雀及小白鷺為本季優勢種。 3.爬行類:記錄到5科7種。除了多線真稜蜥及長尾真稜蜥是主要分布在臺灣中南部的物種,其餘都是臺灣西部平地及低山的常見種。疣尾蝎虎是本季的優勢種。 4.兩棲類:記錄到5科5種。全為臺灣平地及低海拔山區的常見種。黑眶蟾蜍及澤蛙為優勢種。 5.蝶類:記錄到4科11種,波紋小灰蝶及黃蝶是本季的優勢種。	1. 擴大在公有地造林及種植灌木,改善棲地微氣候,降極端氣候對生態。 2. 目前在監測範圍中的淡水 講, 且長期報題中的淡水 問題, 是其事事,是是 議輔, 是是 對, 是是 對, 是是 對, 是是 對, 是 對, 是 對, 是 對,
区域生態	陸域 植 1.植物種類 2.植被類型 生態	物2科2種,裸子植物1科1種,雙子葉植物36 科67種,單子葉植物3科12種。 2.人工造林地樣區以木麻黃、黃槿為最主要之 組成外,其餘試驗林、天然次生林及草生地 樣區之植物組成多為沿海平野常見種類大 花咸豐草、大黍、印度田菁及巴拉草,在木 本植物組成方面以木麻黄、構樹、黃槿、榕 樹、小葉桑等,木本小苗以月橘、春不老、 潺槁木薑子、臺灣海棗為主,草本植物則是 以大黍、數珠珊瑚、印度田菁、大花咸豐草、 鯽魚膽、巴拉草及林投等為主要組成。	1.造或氣布為類点 人名

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 2)

	1	衣 1.2-1 尝 称 雛	卸 八 圣 埏 座 未 图	国西施上期间本字监测值形	似処衣(領 4)
項	目	第二類地下水 污染監測標準	第二類地下水 污染管制標準	監測結果摘要	因應對策
水溫	(°C)	*	*	法規無規定,測值變化仍屬範圍內	本季 SS02 及民 3 地下水測項氨氮、氯鹽、總
pH值		*	*	法規無規定,測值變化仍屬範圍內	溶解固體物、鐵及錳,超過地下水污染第二類
導電度	(µmho/cm)	*	*	法規無規定,測值變化仍屬範圍內	監測標準,分析其原因,因離島産業園區為抽
濁度	(NTU)	*	*	法規無規定,測值變化仍屬範圍內	砂填海造陸而成,地層中原就富含鹽份,由歷 年監測調查結果,鹽化指標測項如氣鹽、總溶
氟鹽	(mg/L)	4	8	本季全符合法規標準	解固體物、導電度等常有偏高情形,此為近海
氣鹽	(mg/L)	625	*	SS02、民 3 超過監測標準	區域地下水中常見情形;而鐵及錳為岩石及土
氨氮	(mg/L)	0.25	*	SS02、民3超過監測標準	壤的組成成分之一,由於地下水與地層礦物之
總溶解固體	豊物 (mg/L)	1250	*	SS02、民 3 超過監測標準	交互作用,致使鐵與錳含量於地下水會有較高
總有機碳	(mg/L)	10	*	本季全符合法規標準	的趨勢;另氨氮偏高原因,本區位於濁水溪沖
油脂	(mg/L)	*	*	法規無規定,測值變化仍屬範圍內	積扇沿海及河川下游部份,沖積扇內畜牧養殖 魚業興盛,農業活動之氮肥及養殖漁業魚貝類
銅	(mg/L)	5	10	本季全符合法規標準	「一点素好益が表示的却 が表示のできる。 がまれた。 がまれた
鉛	(mg/L)	0.05	0.10	本季全符合法規標準	而影響地下水質。上述各測項測值偏高情形,
鋅	(mg/L)	25	50	本季全符合法規標準	為區域環境背景因素,後續將持續監測追蹤,
鉻	(mg/L)	0.25	0.50	本季全符合法規標準	以掌握地下水水質變化狀況。
銿	(mg/L)	0.025	0.050	本季全符合法規標準	
砷	(mg/L)	0.25	0.50	本季全符合法規標準	
鐵	(mg/L)	1.5	*	SS02、民3超過監測標準	
鎳	(mg/L)	0.5	1.0	本季全符合法規標準	
錳	(mg/L)	0.25	*	SS02、民 3 超過監測標準	
汞	(mg/L)	0.01	0.02	本季全符合法規標準	

註:1. "*" 表無對應標準比對。

2.第二類地下水污染監測標準法源:102年12月18日環境部(原行政院環保署)環署土字第1020109443號令發布。

3.第二類地下水污染管制標準法源:102年12月18日環境部(原行政院環保署)環署土字第1020109478號令發布。

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 3)

表」		1 云外傩句式:	基礎產業園區施工期間本季監測情形	机延衣(演习)
		監測項目	監測結果摘要	因應對策
監測類別			註:監測結果將與最劣陸域地面水體(河川、湖泊)標準值做比較(例如pH、DO為戊類;大腸桿菌群為丙類,其中pH為容許範圍,DO為合格下限值,其餘為合格上限值)。(測站:新虎尾溪—蚊港橋、蛟港橋下游;有才寮排水—新興橋、夢麟橋;舊虎尾溪—西湖橋、西湖橋下游;取退潮時表水,三條河川共6處測站。)	
		pH 乙類河川: 6.0~9.0 戊類河川: 同上		尾溪水質,於114年第3季 (7~9月)漲、退潮時,仍多
		水溫(°C)	水溫未設定標準,隨季節變動,與歷次相比無異常。本季漲潮時介於 $27.8\sim31.5$ $^{\circ}$	群、氨氮、正磷酸鹽磷濃度 最常不符合標準,與上年
		導電度(μmho/cm)	之導電度濃度最低,而蚊港橋下游導電度濃度最高。	污染情形仍未見顯著改善 善。本季新虎尾溪與舊虎 尾溪退潮期水中懸浮固體 於有不符合標準情形。而
附近	河川	鹽度 (psu)	平均17.2 psu,以西湖橋下游鹽度含量最高,蚊港橋鹽度最低;退潮時介於0.4~24.4 psu,平均5.0 psu,以蚊港橋下游鹽度含量最高,而蚊港橋鹽度含量最低。	水質重金屬方面,由本季 監測結果顯示,鄰近新興 區之河川水質(含河口)測 點之重金屬含量的數值皆 落於國內環境基準值標準
河川水質	川及排水路	濁度(NTU)	演及不設足標準,本學源潮時介於20~50 N1U,平均3/N1U,返潮時介於16~1800 NTU,平均537 NTU,本季漲潮時以西湖橋與西湖橋下游混濁程度最高為50 NTU,退潮時效港橋之混濁程度最高為1800 NTU。	範圍內且多數符合美國
(含 河 口)		懸浮固體物(mg/L) 丁類河川:<100	本季懸浮固體物濃度漲潮時介14.2~66.4 mg/L,平均40.0 mg/L,漲潮除蚊所有測點皆符合地面水最大容許上限值(≦100 mg/L);退潮時介於19.4~1540 mg/L,平均509 mg/L,退潮時蚊港橋、西湖橋與西湖橋下游測點不符合標準,其餘測點皆符合地面水最大容許上限值。	有才察大排(新興橋),之河 月才察大排(新興橋),之河 川污染程度指數(River Pollution Index, RPI),呈現 中度污染情形,舊虎尾溪 (西湖橋)呈現嚴重污染情
		生化需氧量(mg/L) 戊類河川:≤10.0	生化需氧量漲潮時介於< 2.0 ~ 6.2mg/L ,平均 2.9mg/L ,本季漲潮時所有測點皆符合陸域水體戊類水質標準($\leq 10 \text{mg/L}$);退潮時介於 2.4 ~ 4.0mg/L ,平均 3.2mg/L ,退潮時所有測點皆符合陸域水體戊類水質標準。	形。依據環境部「列管污染 源資料查詢系統」於雲林 縣麥寮鄉轄內重點水污染
		大腸桿菌群(CFU/100 mL) 丙類河川:≤10,000	皆高於丙類陸域水質標準(≦10,000 CFU/100mL);退潮時介於 1.3 x10 ² ~1.5×10 ⁵ CFU/100 mL,平均 9.1×104 CFU/100 mL,除蚊港橋下游測點外,其餘測點皆不符合標準,以西湖橋最高測值為 1.5×10 ⁵ CFU/100 mL,研判近岸河口之有機性污染嚴重,應與陸源都由完成此下泛過數率,在投資股票。	卿, 水乃宗事素計月/4家 牧業,推測大宗陸源畜牧 廢水與都市家庭廢水輸入 也使得雲林縣轄內內陸河 川受到一定程度的污染。
		溶氧(mg/L) 戊類河川:≥2.0	溶氧漲潮時介於 $3.86\sim5.63 \text{mg/L}$,平均 4.65mg/L ,本季漲潮所有測點溶氧測值皆符合地面水體最低容許下限值($\geq 2.0 \text{mg/L}$);退潮時介於 $4.17\sim6.69 \text{mg/L}$,平均 4.96mg/L ,本季退潮所有測點溶氧測值皆符合標準。	乃積極推動河川水質改善
		氨氮(mg/L) 丙類河川:≦0.3	漲潮時介於0.12~5.40 mg/L,平均2.41 mg/L,除西湖橋下游測點外, 其餘測點測值皆不符合陸域水質標準(≦0.3 mg/L),而新興橋氨氮 濃度最高為5.40 mg/L;退潮時介2.93~11.9 mg/L,平均6.32 mg/L, 所有測點的氨氮濃度皆不符合陸域水質標準,新興橋氨氮濃度最 高為11.9 mg/L。推測為陸源畜牧廢水與都市家庭污水排入,造成 河川水體氮磷類營養鹽負荷高,導致鄰近之潮間帶測點水質氨氮 濃度偏高。	不見八不服主之八川加风。
		硝酸鹽氮(mg/L)	硝酸鹽氮未設定標準。漲潮時介於 $0.04\sim1.29mg/L$,平均 $0.54mg/L$;退潮時介於 $0.41\sim1.06mg/L$,平均 $0.69mg/L$,以蚊港橋濃度最高為 $1.06mg/L$ 。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 4)

監測	. 2-1	云外栅面式至领	産業園區施工期间本孚監測情形概:	近衣(領4)
监 冽 類別		監測項目	監測結果摘要	因應對策
		亞硝酸鹽氮(mg/L)	亞硝酸鹽氮未設定標準,與歷次相比無異常。漲潮時介於<0.01~0.12 mg/L,平均0.08 mg/L;退潮時介於0.07~0.16 mg/L,平均0.12 mg/L,以新興橋與夢麟濃度最高為0.16 mg/L。	
		正磷酸鹽(mg/L) 總磷(包含正磷酸鹽) 丙類河川:≤0.05	正磷酸鹽測值漲潮時介於0.031~0.829 mg/L,平均0.371 mg/L; 退潮時介於0.202~1.45 mg/L,平均0.676 mg/L。本季漲、退潮, 除漲潮時西湖橋下游外,其餘測點均不符合陸域水質標準(≦ 0.05 mg/L 總磷係包括正磷酸鹽、聚(焦)磷酸鹽及有機磷等物質, 正磷酸鹽乃總磷其中之一部份),尤其是退潮時夢麟橋正磷酸鹽 濃度為最高,達1.45 mg/L。	
		矽酸鹽(mg/L)	砂酸鹽未設定標準,漲潮時介於0.31~7.20 mg/L,平均4.17 mg/L; 退潮時介於1.74~14.8 mg/L,平均9.15 mg/L,且漲潮時以蚊港橋 濃度最高為7.20 mg/L;退潮時以新興橋濃度最高達14.8 mg/L。	
		酚類(mg/L)	國內地面水酚類之標準為 $\leq 0.005 \text{ mg/L}$,本季漲潮時介於 $< 0.0050 \sim 0.0050 \text{ mg/L}$,平均 0.0050 mg/L ,所有測點皆符合標準;退潮時介於 $ND < 0.0017 \sim < 0.0050 \text{ mg/L}$,平均 0.0028 mg/L ,本季退潮所有測點測值皆符合標準。	
		油脂(mg/L)	總油脂(含動物性及礦物性油脂)於漲潮介於<0.5~1.6 mg/L,平均 0.9 mg/L;退潮總油脂介於<0.5~1.5 mg/L,平均1.0 mg/L。	
附近		銅(mg/L) 地面水體:≤0.03	保護人體健康相關環境水質基準規定銅含量須低於 0.03 mg/L, 本季重金屬銅含量於漲潮時介於 0.0007~0.0023 mg/L,平均 0.0015 mg/L;退潮時介於 0.0012~0.0114 mg/L,平均 0.0048	
之 河 川 水	河川及排	Ma (m)	mg/L。本季漲、退潮時,各樣點銅含量均落於國內環境基準值標準範圍內,亦符合美國海洋大氣總署(NOAA)之銅立即毒性影響值(0.013 mg/L)之情形。	
小 質 (含 河	水路 (續)	鍋(mg/L) 地面水體:≤0.005	編與歷次相比無異常。本季漲、退潮時重金屬編含量各樣點測值皆為 ND<0.0001 mg/L。本季漲、退潮時各樣點編含量均符合國內環境基準值規定編含量須低於 0.005 mg/L 之標準,且各樣點編濃度亦符合美國 NOAA 淡水水質編容許濃度需低於 0.002	
ロ)		鉛(mg/L) 地面水體:≤0.01	mg/L(立即毒性影響值)之規定。 鉛漲潮時介於<0.0006~0.0026 mg/L,平均 0.0016 mg/L;退潮時 介於 0.0007~0.0091 mg/L,平均 0.0043 mg/L,漲、退潮時,全 部樣點符合國內環境基準值鉛含量不得高於 0.01 mg/L 之要求, 亦符合美國 NOAA 淡水水質鉛容許濃度需低於 0.065 mg/L(立 即毒性影響值)之規範。	
		鋅(mg/L) 地面水體:≤0.5	鋅退潮時平均高於漲潮時,漲潮時介於 0.0094~0.0212 mg/L,平均 0.0136 mg/L;退潮時介於 0.0103~0.0492 mg/L,平均 0.0304 mg/L,本季漲、退潮各樣點皆符合國內環境基準值標準(≦0.5 mg/L)。	
		鎔(mg/L) 地面水體:≤0.05(Cr ⁶⁺)	錄(包含三價絡+六價絡)在本季漲潮時各測站之總絡濃度皆為 ND<0.002 mg/L;退潮時介於 ND<0.002~0.006 mg/L,平均 0.003 mg/L,漲、退潮之各測點均低於六價絡標準(≤ 0.05 mg/L),與歷 次相比無異常。	
		砷(mg/L) 地面水體: <u><</u> 0.05	砷與歷次相比無異常。本季漲潮時介於 0.0015~0.0154 mg/L,平均 0.0065 mg/L;退潮時介於 0.0050~0.0167 mg/L,平均 0.092 mg/L,漲、退潮時,各樣點砷含量均符合保護人體健康相關環境水質標準(≦0.05 mg/L),亦符合美國 NOAA 淡水水質砷容許濃度需低於 0.34 mg/L(立即毒性影響值)之規範。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 5)

監測 類別		監測項目	監測結果摘要	因應對策
		汞(mg/L) 地面水體:≤0.001	表與歷次相比無異常,本季漲潮皆為 $ND<0.0001 mg/L$;退潮皆為 $ND<0.0001 mg/L$,除符合國內保護人體健康相關環境水質標準($\leq 0.001 mg/L$),亦符合美國 $NOAA$ 淡水水質汞容許濃度需低於 $0.0014 mg/L$ (立即毒性影響值)之規定。	
		鐵(mg/L)	鐵未設定標準,與歷次相比無異常。漲潮時介於 0.0773~0.439 mg/L,平均 0.283 mg/L;退潮測值介於 0.407~2.27 mg/L,平均 1.08 mg/L。	
附近河	河	鈷(mg/L)	结未設定國內標準,本季漲潮時各測站之數值為 0.0005~0.0006 mg/L,平均 0.0006 mg/L,整體變動範圍小;而退潮測值介於 0.0006~0.0060 mg/L,平均 0.0023 mg/L,漲、退潮皆符合美國 NOAA 篩號表到淡水水質鈷容許濃度需低於 1.5 mg/L(立即	
7川水質(含	排水路	鎳(mg/L)	毒性影響值)之規定。	
河 口)	(續)	氰化物(mg/L)	0.47 mg/L(立即毒性影響值)之規定。 國內氰化物標準訂為≦0.05 mg/L。本季漲潮時皆為 ND<0.001 mg/L,退潮時皆為 ND<0.001 mg/L,本季全數測站之氰化物濃度皆符合河川標準,與歷次相比無異常。	
		陰離子介面活性劑(mg/L)	陰離子介面活性劑未設定標準,漲潮介於<0.10~0.11 mg/L,平均0.10 mg/L;退潮時皆為<0.10 mg/L,各樣點均落於歷次變動範圍內,無明顯異常。	
		葉綠素a(μg/L)	葉綠素a未設定標準,漲潮時介於5.7~15.7 μ g/L,平均10.3 μ g/L,以夢麟橋葉綠素a濃度最高為15.7 μ g/L;退潮時介於0.2~17.5 μ g/L,平均8.4 μ g/L,以新興橋葉綠素a濃度最高為17.5 μ g/L。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 6)

	久 」	1.2-1 雲林雛島式	, 基礎產業園區施工期間本李監測情形	がこれ 衣 (領 0)
監測		#4 m1	監測結果摘要	eri etc iii te
類別		監測項目	註:新興區之出海口潮間帶區(測站:N1、N3、N4、N5等4處)屬	因應對策
		IYY	近岸海域,監測結果以甲類海域水質標準做比較。	1 * * * * * * * * * * * * * * * * * * *
		pH 甲類海域: 7.6~8.5	pH 漲潮時平均高於退潮時,漲潮時介於 8.037~8.170,平均為 8.105,退潮時介於 7.604~7.969,平均 7.828,各測站均落於甲類	
		類 類	[8.103, 逐潮时介於 7.004~1.909, 十均 7.828, 各澳站均溶於平類海域水質標準範圍內(pH 7.6~8.5)。	月照 114 平 第一 李(4~0 月) 別相比,本季大腸桿菌群之不
		水溫(°C)	水溫未設定標準,隨季節變動。漲潮時介於29.7~30.6℃,平均30.0	1
		☆ (C)	C;退潮時介於30.9~31.8℃,平均31.4℃,與歷次相比無異常。	合格率有下降為 75%, 氨氮不
				合格率與上季相比有下降為
		導電度(μmho/cm)	導電度無標準,隨河海水漲退潮時混合比例而變化,與歷次相比	75%,退潮時舊虎尾溪出海口
			無異常。漲潮時介於45700~49000 mmho/cm,平均47575 mmho/cm;退潮時介於10200~41300 mmho/cm,平均28650	N5 測站之氨氮高於甲類水體
			mmho/cm,逐潮時以新虎尾溪出海口N1測站最高,台西水閘N4	水質標準 12 倍,整體水質品
			測站導電度最低;而退潮則是台西水閘N4測站最高,舊虎尾溪出	質相對較差。重金屬方面,於
			海口N5測站導電度最低。	漲、退潮期,多能符合國內「保
		鹽度	鹽度無標準,與歷次相比無異常。漲潮時介於29.9~32.3 psu,平	護人體健康之海洋環境品質
		(psu)	均31.2 psu;退潮5.7~26.8 psu,平均18.1 psu,漲潮時以新虎尾溪	標準」,未來將持續監測以掌
			出海口N1測站最高測站鹽度最高達32.3 psu,則台西水閘N4測站	握此區域水質變動情形。
			鹽度最低為29.9 psu;而退潮則是台西水閘N4測站鹽度最高26.8	
			psu,則舊虎尾溪出海口N5測站鹽度最低5.7 psu。	
		溶氧(mg/L)	溶氧於漲潮時平均高於退潮時。漲潮時介於6.38~7.51 mg/L,平	
		甲類海域: ≥5.0	均6.68 mg/L;退潮時介於2.95~5.37 mg/L,平均4.38 mg/L,本季	
			脹潮所有測站溶氧皆符合甲類與乙類海域水質標準(≥5.0	
			mg/L),退潮時除台西水閘N4測站外,其餘測點溶氧皆不符合乙	
			類水質標準以舊虎尾溪出海口N5測站溶氧最低為2.95 mg/L。	
	新	濁度(NTU)	濁度未設定標準,漲潮時介於3.9~19 NTU,平均10 NTU,漲潮	
海	777		時台西水閘N4測站濁度最高;退潮時介於45~310 NTU,平均148	
	興	an as k promise	NTU,退潮時有才寮出海口N3測站濁度最高。	
域		生化需氧量(mg/L) 甲類海域: <2	本季漲潮生化需氧量漲潮時皆為< 2.0 mg/L ,所有測站皆符合甲類海域水質標準($\leq 2 \text{ mg/L}$),與符合乙類海域水質標準($\leq 3 \text{ mg/L}$)	
25%	品	↑ 類 本	類海域水資保平($\leq 2 \text{ mg/L}$),與付合乙類海域水資保平($\leq 3 \text{ mg/L}$);退潮時介於<2.0~3.4 mg/L,平均2.6 mg/L,除有才寮出海	
	\dagger \dagger	□ 類 / 母 域 · <u>-</u> 3	口N3與舊虎尾溪出海口N5測站外,其餘測站皆符合甲類海域水	
水	潮		質標準,除舊虎尾溪出海口N5測站外,其餘測站皆乙類海域水質	
	間		標準。	
66	127	懸浮固體物(mg/L)	懸浮固體物未設定標準,漲潮時介於4.8~23.9 mg/L,平均14.5	
質	带		mg/L;退潮時介於61.2~344 mg/L,平均174 mg/L。漲潮時舊虎尾	
			溪出海口N5測點懸浮固體物濃度最高23.9 mg/L,則新虎尾溪出	
			海口N1測站之懸浮固體物濃度最低為4.8 mg/L;而退潮時以有才	
			寮出海口N3之懸浮固體物濃度最高達344 mg/L,則台西水閘N4	
			之懸浮固體物濃度為最低61.2 mg/L。	
		大腸桿菌群(CFU/100 mL)	本季大腸桿菌群漲潮時介於15~6.1×10 ³ CFU/100 mL, 平均1.6×	
		甲類海域:≤1,000	10 ³ CFU/100 mL;退潮時介於1.4×10 ² ~4.5×10 ⁵ CFU/100 mL,平均	
			1.5×10 ⁵ CFU/100 mL,本季漲潮時除舊虎尾溪出海口N5外,其餘	
			測站大腸桿菌皆符合甲類海域水質標準(≦1,000 CFU/100 mL)與 乙類海域水質標準(≦30,000 CFU/100 mL)。退潮除台西水閘N4	
			乙類海域水質標準(≦30,000 CFU/100 mL)。逐潮除台四水闸N4 測點外,其餘測站大腸桿菌不符合甲類水質標準,除新虎尾溪出	
			海口N1與台西水閘N4測點外,其餘測站大腸桿菌不符合乙類水	
			質標準,以舊虎尾溪出海口N5測值最高為4.5×105 CFU/100 mL。	
			, and a second control of sold of the second control of sold of the second control of th	
		氨氮(mg/L)	氨氮海域水質退潮時平均高於漲潮時,本季漲潮濃度介於	
		甲類海域: <0.3	0.07~0.50 mg/L,平均0.26 mg/L;退潮時介於0.42~3.60 mg/L,平	
		乙類海域:≤0.5	均1.68 mg/L。本季漲潮所有測站皆符合乙類海域水質標準(≦	
			0.50 mg/L),而台西水閘N4與舊虎尾溪出海口N5測站測值分別為	
			0.50與0.37 mg/L略高於甲類海域水質標準(≦0.30 mg/L); 本季退	
			潮除新虎尾溪出海口N1測站外,其餘測站不符合乙類標準與所	
			有測點皆不符合甲類,其中舊虎尾溪出海口N5之氨氮濃度最高	
			達3.60 mg/L,且不符合甲類水質標準逾12倍。推測為陸源畜牧廢	
			水與都市家庭污水排入,造成河川水體 氮磷類營養鹽負荷高,導 致鄰近之潮間帶測點水質氨氮濃度偏高。	
	<u> </u>		以州·以《州间市/州勘·小月·	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 7)

_1	友 1	.2-1 雲林離島式	基礎產業園區施工期間本季監測情形	が 拠 衣 (領 /)
測		監測項目	監測結果摘要 註:新興區之出海口潮間帶區(測站:N1、N3、N4、N5等4處)屬	因應對策
別		ME AND THE	近岸海域,監測結果以甲類海域水質標準做比較。	日心判水
		硝酸鹽氮(mg/L)	硝酸鹽氫未設定標準。漲潮時介於0.03~0.11 mg/L,平均0.09	
			mg/L;退潮時介於0.11~0.63 mg/L,平均0.36 mg/L。漲潮時舊虎	
			尾溪出海口N5之硝酸鹽氮濃度最高達0.63 mg/L。	
		亞硝酸鹽氮(mg/L)	亞硝酸鹽氫未設定標準,於退潮時平均高於漲潮時。漲潮時介於	
		, , ,	<0.01~0.03 mg/L,平均0.02 mg/L;退潮時介於0.08~0.25 mg/L,	
			平均0.13 mg/L,落於歷次變動範圍內。	
		正磷酸鹽(mg/L)	本季正磷酸鹽於漲潮時介於0.024~0.094 mg/L,平均0.053 mg/L;	
		甲類海域:總磷≤0.05	退潮時介於0.213~0.753 mg/L,平均0.428 mg/L。正磷酸鹽本季漲	
		乙類海域:總磷<0.08	潮除新虎尾溪出海口N1與有才寮出海口N3外,其餘測點皆不符	
			合甲類總磷標準 (≦0.05 mg/L,總磷係包括正磷酸鹽、聚(焦)磷	
			酸鹽及有機磷等物質,正磷酸鹽乃總磷其中之一部份),且台西水	
			閘N1測站不符合乙類海域總磷標準(≦0.08 mg/L);退潮時,測點	
			皆不符合甲與乙類總磷標準,以舊虎尾溪出海口N5測站正磷酸	
			鹽測值最高,為0.753 mg/L。新興區潮間帶水質位於內陸排水與	
			海域斷面之交界區,因多受內陸畜牧及家庭等有機廢污水影響,	
		矽酸鹽(mg/L)	造成水質正磷酸鹽濃度偏高。 矽酸鹽未設定標準,漲潮時介於0.296~0.936 mg/L,平均0.564	
		ツ 改画(IIIg L)	一	
			以台西水閘N4測站之矽酸鹽濃度最高0.936 mg/L;而退潮時以舊	
			虎尾溪出海口N5測站之矽酸鹽濃度最高達5.78 mg/L。	
		酚類(mg/L)	本季漲潮時總酚介於ND<0.0017~<0.0050 mg/L,平均0.0042	
		(6 /	mg/L,所有測點皆符合乙類海域水質標準;退潮時皆為<0.0050	
海	新	14-1 W. 2010 X W. 1 = 01000	mg/L,所有測點皆符合乙類海域水質標準。	
	興	油脂(mg/L)	★ 未 外 此 涯 湖 時 众 秋 / 0.5 1 2 m ~ / 1 . 更 以 0.0 m ~ / 1 . 退 湖 時 众 秋	
	兴	, ,	本季油脂漲潮時介於 $<0.5\sim1.2\ mg/L$,平均 $0.8\ mg/L$,退潮時介於 $1.1\sim1.8\ mg/L$,平均 $1.4\ mg/L$,與歷次相比無異常。	
域	區			
		銅(mg/L)	本季重金屬銅於漲、退潮時均符合標準乙類海域水質標準(≦0.03	
水	潮	海洋環境品質標準:≤0.03 mg/L	mg/L),漲潮時介於0.0006~0.0014 mg/L之間,平均0.0010 mg/L;	
•	日日	As a residue of the second of	退潮時介於0.0020~0.0057 mg/L之間,平均0.0030 mg/L。	
	間	鎬(mg/L)	重金屬鍋於漲、退潮時均符合標準乙類海域水質標準(≦0.005	
質	帶	海	mg/L), 漲、退潮時各測站數值皆為ND<0.0001 mg/L, 與歷次相 比無異常。	
		鉛(mg/L)		
ļ		, <u> </u>	鉛於漲、退潮時均符合乙類海域水質標準($\leq 0.01 \text{mg/L}$),漲潮時介於ND< $0.0002 \sim 0.0006 \text{mg/L}$,平均 0.0004mg/L ;退潮時介於	
			0.0017~0.0035 mg/L,平均0.0025 mg/L,落於歷次變動範圍內。	
		鋅(mg/L)	鉾 於漲、退潮時均符合乙類海域水質標準(≦0.03 mg/L),漲潮時	
			介於 0.0052~0.0089 mg/L, 平均 0.0073 mg/L; 退潮時介於 0.0005, 0.0000 mg/L, 平均 0.0126 mg/L。 進潮時以新東层溪山海	
			0.0095~0.0200 mg/L, 平均0.0136 mg/L。漲潮時以新虎尾溪出海口N1測站之鋅含量最高達0.0089 mg/L;退潮時以有才寮出海口	
			N3測站之鋅含量最高達0.0200 mg/L。	
		## (m. o.H.)		
		鉻(mg/L) 海洋環接口質煙準:<0.05 mg/I	總鉻(三價+六價鉻)於漲、退潮時均低於六價鉻標準(≤ 0.05 mg/L) ,漲 時 皆 為 ND<0.002 mg/L ; 退 潮 時 皆 為 介 於	
		海洋環境而資標準・ <u><</u> 0.05 mg/L (Cr6 ⁺)	mg/L), 旅 時 曾 為 ND<0.002 mg/L, 返 潮 時 曾 為 介 於 ND<0.002~<0.003 mg/L, 平均0.002 mg/L。與歷次相比無異常。	
		砷(mg/L)	砷於漲、退潮時均符合標準(≦0.05 mg/L),漲潮時介於	
			0.0018~0.0031 mg/L,平均0.0024 mg/L;於退潮時介於	
			0.0054~0.0113 mg/L,平均0.0088 mg/L。本季漲潮時以有才寮出 海口N3砷濃度最高為0.0031 mg/L,退潮時以舊虎尾溪出海口N5	
			海口N3岬淚度取高為0.0031 mg/L,返潮时以舊虎尾溪出海口N3測站之砷濃度最高為0.0113 mg/L,但仍符合乙類海域之標準,與	
ļ			歷次相比無異常。	
ļ		走(ma/L)		
		汞(mg/L) 海洋環境口质煙準:<0001 mg/L	汞於漲潮時汞濃度皆為 $ND<0.0001 mg/L$,符合國內水質汞濃度標準($\leq 0.001 mg/L$),退潮時汞濃度皆為 $ND<0.0001 mg/L$,符合國	
		/	平($\geq 0.001 \text{ mg/L}$),逐潮時水濕度皆為NDS 0.0001 mg/L ,符合國內水質汞濃度標準($\leq 0.001 \text{ mg/L}$),與歷次相比無異常。	
		(株(mg/I)		
		鐵(mg/L)	鐵未設定標準,漲潮時介於0.0467~0.237 mg/L,平均0.131 mg/L, 於退潮時介於0.547~1.24 mg/L,平均0.791 mg/L,與歷次相比無	
			於返潮時介於U.34/~1.24 mg/L, 平均U./91 mg/L, 與歷次相比無異常。	
		&L(ma/L)		
	Ì	銛(mg/L)	本季漲潮時介於<0.0003~0.0003 mg/L,平均0.0003 mg/L,於退潮	
			時介於0.0007~0.0018 mg/L,平均0.0014 mg/L。	

監測 類別	監測項目	監測結果摘要 註:新興區之出海口潮間帶區(測站:N1、N3、N4、N5等4處)屬 近岸海域,監測結果以甲類海域水質標準做比較。	因應對策
	鎳(mg/L) 海洋環境品質標準:≤0.05 mg/L	鎳與歷次相比無異常均符合標準(\leq 0.05 mg/L)。漲潮時介於 <0.0006~0.0010 mg/L,平均 0.0008 mg/L;本季於退潮時介於 0.0013 ~ 0.0031 mg/L,平均 0.0026 mg/L,與歷次相比無異常。	
	總有機碳(mg/L)	本季總有機碳漲潮介於1.0~1.6 mg/L,平均1.4 mg/L;退潮介於 2.5~4.8 mg/L,平均3.6 mg/L。	
	葉綠素a(μg/L)	葉綠素a未設定標準。漲潮時介於1.4~7.1 μ g/L,平均5.5 μ g/L;退潮時介於9.1~21.6 μ g/L,平均15.3 μ g/L。	
	氰化物(mg/L) 海洋環境品質標準:≤0.01	本季漲潮時氰化物濃度皆為 $ND<0.001\ mg/L$,退潮時氰化物濃度皆為 $ND<0.001\ mg/L$,氰化物濃度全數符合標準($\leq 0.01\ mg/L$)。	
	硫化物(mg/L)	硫化物未設定標準,漲潮時皆為 $ND<0.02\ mg/L$,退潮時介於 $ND<0.02\sim<0.05\ mg/L$,平均 $0.03\ mg/L$,皆落於歷次變動範圍內。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 8)

	衣 」	1.2-1 雲林離島式:	基礎產業園區施工期間本季監測情形	/ 概 延 表 (繯 8)
監測 類別		監測項目	監測結果摘要 註:監測結果以甲類海域水體水質標準做標準。	因應對策
		T.,,	(測站SEC5、SEC7、SEC9、SEC11之水深10m及20m等8處上、下層)	
		pH 甲類海域:7.6~8.5	海域斷面pH介於8.088~8.211,平均8.176,整體酸鹼值略呈現弱鹼性,各樣點均落於甲類海域水質標準(7.6~8.5)範圍內。	落於甲類海域水質標準
		水温(°C)	水溫未設定標準,海域斷面介於 $29.1\sim30.1$ $^{\circ}$,平均 29.6 $^{\circ}$,溫度之空間分佈受離岸距離影響不大,上層水溫主要受日週期變動影響。	(7.6~8.5)範圍內。而於水體渾 濁方面,各樣點懸浮質濃度普 遍偏低,水質清澈良好。至於 海水營養鹽濃度,則無明顯地
, t-		導電度(μmho/cm)	導電度未設定標準,海域斷面介於479000~49800 μ mho/cm,平均49131 μ mho/cm,與歷次相比無異常。	
海		鹽度(psu)	海域鹽度介於31.4~32.8 psu,平均32.3 psu,空間變化具均勻性,整體變動落於歷次範圍內,無明顯異常。	屬濃度(銅、錦、鉛、鋅、鉻、 汞、砷、鐵、銛、鎳)在空間分 佐上比目的力量、在點蓋線化
域	海	溶氧(mg/L) 甲類海域:≥5.0	海域溶氧介於6.39~7.72 mg/L,平均6.78 mg/L,各樣點均符合甲類海域水質標準溶氧量不得低於5.0 mg/L之標準。	佈上皆具均勻性,無顯著變化 差異,皆符合美國NOAA相關 無機重金屬海域水質容許濃
水	域	生化需氧量(mg/L) 甲類海域:<2.0	生化需氧量全數< $2.0~mg/L$,各樣點均落於甲類海域標準($\leq 2.0~mg/L$)範圍內,與歷次相比無異常。	人體健康之海洋環境品質標
質	斷	懸浮固體物(mg/L)	懸浮固體物未設定標準,海域斷面介於4.0~14.0 mg/L,平均6.5 mg/L,各樣點懸浮質濃度無明顯異常。	準,顯示本計畫海域水質現況 尚趨穩定。
	面	濁度(NTU)	濁度未設定標準,海域斷面介於2.2~8.5 NTU,平均4.0 NTU,整 體變動範圍小,空間變化無特定分佈趨勢。	
		透明度(m)	透明度未設定標準,海域斷面介於127~325 cm,平均208 cm,以 SEC 11-20上層水透視度最高,水質相對清澈。	
		大腸桿菌群(CFU/100 mL) 甲類海域:<1,000	大腸桿菌群本季無檢測。	
		氨氮(mg/L) 甲類海域:≤0.3	氣氣測值介於ND<0.02~0.17 mg/L,平均0.08 mg/L,符合甲類海域標準(≦0.30 mg/L)。	
		硝酸鹽氮(mg/L)	硝酸鹽氮未設定標準,本季海域斷面各測站之測點數值介於 $<0.03\sim0.06\mathrm{mg/L}$,平均 $0.04\mathrm{mg/L}$,各樣點濃度無明顯地域性分佈,與歷次相比無異常。	
		亞硝酸鹽氮(mg/L)	亞硝酸鹽氫未設定標準,本季海域斷面各測站之測點介於<0.01~0.02 mg/L,平均0.01 mg/L與歷次相比無異常。	
		正磷酸鹽(mg/L) 甲類海域:總磷≤0.05	磷元素為微生物生長的限制元素,因此,藉由磷含量的變化亦可瞭解水體營養源的分布特性。本季海域斷面正磷酸鹽(總磷係包括正磷酸鹽、聚(焦)磷酸鹽及有機磷等物質,正磷酸鹽乃總磷其中之一部份),本季海域斷面測值介於<0.010~0.019 mg/L,平均0.012 mg/L,本季全數測站的正磷酸鹽濃度均符合甲類海域標準(≦0.05 mg/L)。	
		矽酸鹽(mg/L)	矽酸鹽未設定標準,海域斷面介於0.092~0.357 mg/L,平均0.208 mg/L,與歷次相比無異常。	
		酚類(mg/L) 甲類海域:≤0.005	酚類國內標準為 $\leq 0.005~\text{mg/L}$,海域斷面酚類測值介於ND< $0.0017~\text{mg/L}$,所有測點皆符合標準。	
		油脂(mg/L) 甲類海域:礦物性油脂<2.0	油脂本季無檢測。	
		葉緑素a(μg/L)	葉綠素a未設定標準,海域斷面介於 $0.9\sim5.3~\mu~g/L$,平均 $2.2~\mu~g/L$,與歷次相比無異常。	
		銅(mg/L) 海洋環境品質標準:<0.03 mg/L	依據國內「保護人體健康之海洋環境品質標準」規定,銅濃度須低於0.030 mg/L,本季海域斷面銅濃度介於<0.0006~0.0007 mg/L,平均0.0006 mg/L,各樣點監測結果皆符合國內環境水質基準與美國海洋大氣總署(NOAA)銅容許濃度不得大於0.0048 mg/L之規定。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 9)

測 別	監測項目	監測結果摘要	因應對策
	鎘(mg/L) 海洋環境品質標準:<0.005 mg/L	國內「保護人體健康之海洋環境品質標準」規定,編含量須低於 0.0050 mg/L, 而美國海洋大氣總署(NOAA)則規範,海洋水質編 容許濃度標準需在0.0088 mg/L(慢性長遠影響值)~0.04 mg/L (立即毒性影響值)範圍內,本季海域斷面各樣點之編濃度濃度皆為 ND<0.0001,符合標準與歷次相比無異常。	
	鉛(mg/L) 海洋環境品質標準:<0.01 mg/L	國內「保護人體健康之海洋環境品質標準30」規定,鉛含量不得高於0.01 mg/L,另美國海洋大氣總署(NOAA)則規範,海洋水質可容許之鉛濃度標準需在0.0081 mg/L(慢性長遠影響值)~0.21 mg/L(立即毒性影響值)範圍,本季海域斷面鉛濃度界於ND<0.0002~<0.0006 mg/L,平均0.0003 mg/L,符合標準與歷次相比無異常。	
	鋅(mg/L) 海洋環境品質標準: <0.03 mg/L	本季海域斷面鋅濃度介於< 0.0018 ~ 0.0132 mg/L,平均 0.0046 mg/L,各樣點濃度除符合國內「保護人體健康之海洋環境品質標準」 0.03 mg/L以下之規範,亦遠低於美國NOAA海洋水質鋅容許濃度(立即毒性影響值: 0.09 mg/L;慢性長遠影響值: 0.081 mg/L)標準。	
.	絡(mg/L) 海洋環境品質標準: Cr ⁶⁺ <0.05 mg/L	本季海域斷面各測站樣點之鉻濃度皆為 $ND<0.0020\ mg/L$,各樣點均符合國內環境基準值標準($\le0.05\ mg/L$),亦遠低於美國 $NOAA$ 海洋水質六價絡容許濃度(立即毒性影響值: $1.1mg/L$;慢性長遠影響值: $0.05\ mg/L$)之規範。	
海域域影	砷(mg/L) 海洋環境品質標準:<0.05 mg/L	國內「保護人體健康之海洋環境品質標準」規定,砷水質基準為0.05 mg/L,另美國海洋大氣總署(NOAA)規範,海洋水質砷容許濃度標準需在0.036 mg/L(慢性長遠影響值)~0.069 mg/L(立即毒性影響值)範圍內,本季海域斷面砷濃度介於<0.0012~0.0093 mg/L,平均0.0018 mg/L,與歷次相比無異常,皆符合標準與歷次相比無異常。	
面 (續)	汞(mg/L) 海洋環境品質標準:≤0.001 mg/L	本季各海域斷面重金屬汞濃度皆為ND< 0.0001mg/L ,各樣點監測結果均符合國內環境基準值標準($\le 0.001 \text{mg/L}$),亦符合美國NOAA篩選速查表列海洋水質汞容許濃度(立即毒性影響值: 0.0018mg/L ;慢性長遠影響值: 0.00094mg/L)相關規範。	
	鐵(mg/L)	國內海域水質鐵濃度未設定標準,本季海域斷面鐵濃度介於 0.0115~0.0444 mg/L,平均0.0299 mg/L,與歷次相比無異常。鈷與歷次相比無異常。	
	銛(mg/L)	本季海域斷面銛濃度介於ND<0.0001~<0.0003 mg/L,平均0.0002 mg/L,整體變動範圍小,與歷次相比無異常。	
	鎳(mg/L) 海洋環境品質標準:≤0.05 mg/L	本季線濃度介於ND<0.0002~<0.0006 mg/L,平均0.0005 mg/L各樣點監測結果均符合國內環境基準值標準(≦0.05 mg/L),以美國NOAA標準檢視,本季監測結果均符合美國NOAA篩選速查表列海洋水質鎮容許濃度(立即毒性影響值:0.074 mg/L;慢性長遠影響值:0.0082 mg/L)之規範。	
	總有機碳(mg/L)	總有機碳本季無檢測。	
	氰化物(mg/L) 甲類海域:<0.01	氰化物本季無檢測。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 10)

監測 類別		監測項目	監測結果摘要	因應對策	
附近河川	河川及排水路	銅(mg/L) 底泥:50.0~157	底質銅(Cu)含量28.1(西湖橋下游)~45.5(夢麟橋)mg/kg-dry,平均值為35.4 mg/kg-dry,本季所有測站之"銅"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(50.0 mg/kg)相比皆無異常,以美國海洋大氣總署(NOAA)標準檢視,本季除夢麟橋與新興橋測站外,其餘測站之"銅"含量符合美國NOAA海域沉積物重金屬對生物毒性最低影響範圍值(Effect Range Low, ERL)銅為34 mg/kg之標準。	附近河川與河口測點,包含新、舊虎尾溪、有才察大排與 馬公曆大排之底質重金屬"線" 含量皆普遍偏高,"編"、"鋅、 與"砷"含量有不符合國內「底 泥品質指標之分類管理及用	
		鍋(mg/L) 底泥:0.65~2.49	底質鍋(Cd)含量介於ND<0.50~<0.68(新興橋) mg/kg-dry,平均值為0.54 mg/kg-dry,除新興橋外,其餘測站測值與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.65 mg/kg)相比皆無異常。本季所有測站測值皆符合美國海洋大氣總署(NOAA) ERL之濃度(1.2 mg/kg)。		
		鉛(mg/L) 底泥:48.0~161	底質鉛(Pb)含量介於0.80~13.8(蚊港橋下游) mg/kg-dry,平均值為11.8 mg/kg-dry,本季所有測站之"鉛"含量與國內底質鉛容許標準之下限值(48.0 mg/kg)相比皆無異常,及符合美國海洋大氣總署(NOAA) ERL之濃度(46.7 mg/kg)。		
		鋅(mg/L) 底泥:140~384	底質鋅(Zn)含量介於120(西湖橋)~194 mg/kg-dry (夢麟橋),平均值為140 mg/kg-dry,本季除夢麟橋與新興橋測站外,其餘測站之"鋅"含量與國內「底泥品質指標之分類管理及用途限制辦法」之鋅含量下限值(140 mg/kg)相比皆無異常。本季除夢麟橋與新興橋下游測站外,其餘測站"鋅"含量不符合美國NOAA ERL之濃度(150 mg/kg)標準。		
底質含河		鉻(mg/L) 底泥:76.0~233	底質絡(Cr)含量介於27.0(西湖橋)~31.3 mg/kg-dry(蚊港橋),平均值為29.2 mg/kg-dry,本季各測站之"鉻"皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(76 mg/kg),以及美國NOAA的ERL之濃度(81 mg/kg)。		
п)		鎳(mg/L) 底泥:24.0~80	底質線(Ni)含量介於26.9(西湖橋)~31.3 mg/kg-dry(蚊港橋),平均值為29.1 mg/kg-dry,本季所有測站皆高於國內「底泥品質指標之分類管理及用途限制辦法」之鎮下限值(24 mg/kg),以及所有測站皆高於國內標準與美國NOAA鎮ERL為20.9 mg/kg,需持續觀察。		
		砷(mg/L) 底泥:11.0~33	底質砷(As)含量介於6.69(西湖橋)~15.0 mg/kg-dry(新興橋),平均值為10.5 mg/kg-dry,本季除蚊港橋、西湖橋與西湖橋下游測站外,其餘測點皆高於國內「底泥品質指標之分類管理及用途限制辦法」之砷含量下限值(11.0 mg/kg),而本季除西湖橋與西湖橋下游測站外,其餘測站之砷含量皆略高於美國NOAA砷ERL濃度(8.2 mg/kg),需持續觀察。		
		汞(mg/L) 底泥:0.23~0.87	底質汞(Hg)含量本季測站之數值皆為<0.100 mg/kg-dry,各樣點之"汞"皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.23 mg/kg),而本季除西湖橋測站,其餘測站之汞含量皆符合美國NOAA汞ERL之濃度(0.15 mg/kg)。		
		粒徑分析	麥寮與新興區等陸域河川底質沉積物則大部分為泥質,中值粒徑(D50) $0.008\sim0.056$ mm。		

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 11)

監測 類別	監測項目		監測結果摘要	因應對策	
		銅(mg/L) 底泥:50.0~157	底質銅(Cu)含量介於<4.00~35.5(N3) mg/kg-dry,平均值為8.26 mg/kg-dry,所有測點之"銅"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(50.0 mg/kg),以及除有才寮出海口N3測站外,其餘測站皆低於美國NOAA海域沉積物重金屬對生物毒性最低影響範圍值(Effect Range Low, ERL)銅為34 mg/kg之標準。	金屬測值均低於標準下限值, 但潮間帶底質有才寮出海口 N3測站之"砷"與"鎳"含量,有	
		編(mg/L) 底泥:0.65~2.49	底質編(Cd)含量測點測值皆為ND<0.50 mg/kg-dry,所有測站"編"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.65 mg/kg)相比皆無異常,全數測站皆符合美國海洋大氣總署(NOAA) ERL之錦濃度(1.2 mg/kg)。		
	新興區潮	鉛(mg/L) 底泥:48.0~161	底質鉛(Pb)含量測值介於<7.00~7.61(N3) mg/kg-dry,平均7.05 mg/kg-dry,本季所有測站之"鉛"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(48 mg/kg)相比皆無異常,及符合美國海洋大氣總署(NOAA) ERL之鉛濃度(46.7 mg/kg)。		
海		鋅(mg/L) 底泥:140~384	底質鋅(Zn)含量介於33.2~164(N3) mg/kg-dry,平均值為56.1 mg/kg-dry,除有才寮出海口N3測站外,其餘測站"鋅"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(140 mg/kg)外,以及美國海洋大氣總署(NOAA)底質鋅ERL濃度(150 mg/kg)。		
域	間帶	絡(mg/L) 底泥:76.0~233	底質絡(Cr)含量介於<23.0~28.1(N3)mg/kg-dry,平均值為23.4 mg/kg-dry,本季海域各樣點之"鉻"含量均低於國內「底泥品質指標之分類管理及用途限制辦法」容許下限值(76.0 mg/kg)與美國海洋大氣總署(NOAA) 底質鉻ERL濃度標準,與歷次相比無異常。		
底質	及 海 域	鎳(mg/L) 底泥:24.0~80	底質線(Ni)含量介於15.4~26.6(N3) mg/kg-dry,平均值為20.2 mg/kg-dry,除有才察出海口N3測站外,其餘測站皆低於"線"之國內「底泥品質指標之分類管理及用途限制辦法」之下限值(24 mg/kg),以及美國海洋大氣總署(NOAA) ERL之鎳濃度(20.9 mg/kg)。		
	斷面	砷(mg/L) 底泥:11.0~33	底質砷(As)含量介於3.53~5.86 (N3) mg/kg-dry,新興區出海口潮間帶平均值為3.53 mg/kg-dry,所有測站"砷"含量皆低於國內外底質砷容許標準(下限值為11.0 mg/kg),以及美國海洋大氣總署(NOAA) 底質砷ERL濃度(8.2 mg/kg)標準。		
		汞(mg/L) 底泥:0.23~0.87	底質汞(Hg)含量測值介於ND<0.035~<0.100 mg/kg-dry,平均值為0.040 mg/kg-dry,本季各測點之"汞"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」之汞含量下限值(0.23 mg/kg)及美國海洋大氣總署(NOAA)底質鎳ERL濃度(0.15 mg/kg)標準。		
		粒徑分析	雲林海域的底質沉積物大部分是砂質,泥質僅呈零星分布,中值粒徑(D50)0.014~0.242 mm,介於粉砂到中砂範圍。粉砂普遍分布全區,分布範圍從岸邊都-20米水深都有,而細沙主要分布在-5米水深區域。依據潮間帶測站底質沉積物的結果,新虎尾溪出海口N1、舊虎尾溪出海口N5、有才寮出海口N3與台西水閘N4大部分為中沙,中值粒徑(D50)為分別0.198 mm、0.013 mm、0.121 mm與0.023 mm。		

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 12)

		12)	
監測 類別	監測項目	監測結果摘要	因應對策
海域生態	水文水質調查	水溫介於 $28.6 \le 31.5$ °C。 鹽度介於 $24.02 \le 31.00$ 。 溶氧量介於 $24.02 \le 31.00$ 。 溶氧量介於 $5.30 \le 6.64$ mg/l 之間,所有測站均合乎我國甲類海域海洋環境品質標準(>5.0 mg/l)。溶氧飽和度則介於 $81.2 \le 103.6$ %之間。 pH 值介於 $7.82 \le 8.06$ 之間,所有測站均符合我國甲類海域海洋環境品質標準(介於 $7.5 \ge 18.5$)。 葉綠素 a 介於 $0.12 \le 0.56 \mu$ g/l。 營養鹽中的氣氣介於 $0.004 \le 1.569$ mg/l;硝酸氮介於 $0.005 \le 0.095$ mg/l;亞硝酸氮介於 $0.007 \le 0.040$ mg/l;磷酸鹽介於 $0.008 \le 0.410$ mg/l 之間;矽酸鹽介於 $0.149 \le 1.320$ mg/l 之間。 生化需氧量介於 $1.77 \le 2.54$ mg/l 之間,僅 $5-10$ 及 $11-20$ 測站符合我國甲類海域海洋環境品質標準(<2 mg/l)。 懸浮固體量介於 $7.6 \le 18.1$ mg/l 之間。	符合我國甲類海域海洋環境品質標準(<2 mg/l),需持續監測後續之變化。
	浮游動植物調查	浮游植物的密度範圍介於 $1.32\sim7.05$ x 10^3 cells/l,總平均密度為 3.76 x 10^3 cells/l,最高在 $5-10$ S 測站,最低在 $11-20$ S 測站。 浮游動物的豐度介於 $2\sim1,640$ 個/m³之間,總平均豐度值為 560 個/m³, $5-20$ V 測站有最高值,而 $11-20$ V 測站呈現最低值。	度低於歷年同季平均 值,需持續觀察後續之
	亞潮帶底棲動物調查	第 3 季(7 月 17 日)調查結果,包含星蟲綱(2 科)、有針綱(1 科)、多毛綱(10 科)、海膽綱(1 科)、蛇尾綱(1 科)、雙殼綱(9 科)、掘足綱(1 科)、腹足綱(7 科)、頭足綱(1 科)、軟甲綱(18 科)與硬骨魚綱(5 科),共計 56 科。總平均豐度為 3,346 ind./1000 m^2 ,總平均生物量為 209 g/1000 m^2 。豐度以 9-10 测站(8,148 ind./1000 m^2)為最高,生物量同樣以 9-10 測站(481 g/1000 m^2)為最高。豐度以 11-10 測站(472 ind./1000 m^2)最低,而生物量以 9-20 測站(31 g/1000 m^2)為最低。	化。
	潮間帶底棲動物調查	第 3 季(7 月 23 日)潮間帶調查的小型底棲無脊椎生物包含有針綱(1 科)、多毛綱(6 科)、雙殼綱(4 科)、腹足綱(4 科)和軟甲綱(6 科),共計 20 科;平均豐度為 280 ind./m²,平均生物量為 190.85 g/m²。豐度以五條港高潮線測站最高,生物量則以五條港低潮線測站最高,分別為 690 ind./m²和 537.57 g/m²。而新興水閘高潮線測站為豐度最低之測站,生物量以五條港高潮線最低。	化。
	刺網漁獲生物種類調查	(一)漁獲大類組成 114年第3季(114/07)共漁獲8科12屬13種,各大類記錄到的種類數如下: 軟骨魚類1科2屬2種、硬骨魚類6科8屬9種、節肢動物1科2屬2種,本季無 漁獲軟體動物。 (二)漁獲重量 第3季漁獲重量為28.844公斤。漁獲重量最高之三種類分別為大吻斜齒鯊 (9.294公斤)、黑邊鰭真鯊(8.685公斤)和星雞魚(5.533公斤)。 (三)漁獲數量 第3季漁獲數量分析方面,本季總漁獲數量為73隻。而漁獲數量最高的種類分別為大吻斜齒鯊(34隻)、斑海鯰(9隻),以及星雞魚(7隻)。 (四)漁獲售價 第3季標本船的漁獲收益為2,887元。銷售金額最高的前三種分別為星雞魚 (1383元)、大吻斜齒鯊(464元)及黑邊鰭真鯊(434元)。	利用刺網漁業調查雲 林近岸海域漁獲生物 的組成及售價資料,用 以監測及探討沿近岸 海洋生物資源的現況。
	優勢刺網漁獲 重金屬濃度調 查	本次調查之十四種(魚類 10 種、蟹類 2 種、文蛤及牡蠣)刺網漁獲生物體中之重金屬濃度,皆呈現依種別、組織別或大小別的差異。初步所調查之水產生物體內中含 As (砷)、Cd (鎘)、Cu (銅)及 Zn (鋅)濃度測值分別介於 0.043~5.184、<0.025~0.140、0.091~21.30及 1.970~43.49 mg/kg 濕重。所有生物體臟器內的濃度都高於體內的濃度。十四種底棲水產生物	金屬的變化的趨勢,做 為未來重金屬污染生 物偵測的參考 依據。

體的 24 種組織中之 As、Cd、Cu 及 Zn 濃度,大多維持在一定範圍內變動,其體內中的測值與台灣未污染地區以及世界其他未污染地區相比,並無明顯異常之現象。

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 13)

		13)	
監測類別	監測項目	監測結果摘要	因應 對策
		1.仔稚魚及魚卵部分: 本次採樣共捕獲11科的仔稚魚,總平均豐度為189.32尾/1000m³,其中以沙鮻 科漁獲尾數所佔比例最高(30.92%)。魚卵平均豐度為10279.50個/1000m³。 2.甲殼類部分: 樣品中甲殼類蝦幼生的平均豐度為 2655.86 隻/1000 m³,而蟹幼生的平均豐度為 1009.81 隻/1000 m³。	應持續監測。
漁業經濟	漁獲及網類值業、:	1. 刺網漁業: 依作業水層及網具固著性又細分為中層流刺網、底刺網及底流刺網,本季刺網漁業資料收集,調查船數 9 艘,共蒐集 138 航次漁獲資料,漁獲物有 20 科 27 種的水產生物,所有漁獲總量為 4,833 公斤,總漁獲金額為 1,066,473 元。 2.監測結果: a. 刺網漁業: 本季調查結果為 114 年第 3 季。本季的 CPUE(公斤/航次/艘)中以 7 月份的 39.5 公斤/航次/艘較高,而 8 月份的 32.0 公斤/航次/艘較低。本季的 IPUE(元/航次/艘)中以 9 月份的 8,952 元/航次/艘較高,8 月份的 5,959 元/航次/艘較低。而綜觀比較 85~114 年各季的 CPUE 和IPUE,在 CPUE(公斤/航次/艘)方面:以 104 年 2 月份最低,為 11.5公斤/航次/艘,而 88 年 3 月最高達 1,754 公斤/航次/艘;其次是 91年 1 月與 4 月分別為 1,503.7 及 1,569.0 公斤/航次/艘。在 IPUE(元/航次/艘)方面,以 104 年 5 月最低,為 2,550 元/航次/艘。次低是 94年 3 月的 2,619/航次/艘。而 88 年 3 月最高,為 314,090 元/航次/艘。其次是 91年 4 月及 88 年 7 月及次高,分別為 250,966 及 213,885元/航次/艘。 3.綜合比較經檢視本季 7-9 月所蒐集資料顯示,該地區漁船經營漁業主要為刺網,由 7 月統計可得較高的 CPUE,9 月可得較高的 IPUE。	

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 14)

		14)	
監測 類別	監測項目	監測結果摘要	因應 對策
漁業經濟	養種及1.2.鱸鯛蝦面、值韉魚蛤魚魚魚類在「養養混養養養養養養」。 在	1.牡蠣養殖 114 年第3 季共回收 18 戶資料,養殖面積為 93.5 公頃,地點為四湖鄉,此區域牡蠣養殖以附苗大宗,經調查後本季牡蠣養殖暫無工作,本季未收成,總產值為 0元,第3 季牡蠣養殖工作為整理蚵架與附苗。 2.經魚養殖 114 年第3 季共回收 12 戶資料,經調查後本季為 113 與 114 年放養鰻苗,養殖面積為 19.3 公頃,本年度有新放養苗,放養量為 902,712 尾,本季有 3 戶收成,總產值為 4,540,140 元,成本支出為 12,928,718 元,淨收入為-8,388,578 元。因此單位產量每公頃為 597 公斤,平均每公頃題值淨收入為-434,641 元。 3.文蛤混養 114 年第3 季已回收 7 戶資料,養殖面積為 18 公頃。本季有 2 戶收成,文蛤混養之總產量為 5,999 公斤,總產值為 421,950 元,成本支出為 390,390 元,淨收入為 31,560 元。而單位產量方面,平均每公頃為 65,234元,所以平均淨收入每公頃為 1,752 元。 4.鱸魚養殖 114 年第3 季已回收 3 戶資料,養殖面積為 11.1 公頃。放養量共 350,000 尾,本季無收成,總產量為 0 公斤,總產值為 0 元,成本支出為 8,288,633 元。因此單位產量每公項為 0 公斤,平均每公項單位淨收入為-8,288,633 元。因此單位產量每公項為 0 公斤,平均每公項單位淨收入為-746,724 元。 5.鯛魚養殖 114 年第3 季回收 1 戶資料,養殖面積為 2.5 公頃。本年度放養新苗 102,000 尾,暫無收成總產量為 0 公斤,總產值為 0 元,成本支出為 1,175,862 元。內地單位產量每公項為 0 公斤,來均每公項單值淨收入為-293,966 元。因此單位產量每公項為 0 公斤,次本支出為 1,175,862 元。淨收入為-917,000 元,單位產產每公項為 0 元斤,平均每公項單值淨收入為-293,966 元。	持續長期監測

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 15)

表 1.2-1 雲林離島式基礎產業園區施工期間本季監測情形概述表(續 16)

既 油		10)	1
監測 類別	監測項目	監測結果摘要	因應對策
	潮汐、	1.潮汐:2025 年 7~9 月潮位統計 (單位:m)	持續監測
	波浪、	測站 施測期間 最高潮位 最低潮位 各月平均潮差	
	海流	MS2025/07-2025/09 +2.445 -1.543 2.621~2.698	
		PZ 2025/07-2025/09 +2.206 -1.234 2.197~2.265	
		麥寮站本季各月平均潮差介於 2.621m~2.698m(歷年量測介於 2.244m~3.177m)、箔子寮站介於 2.197m~2.265m(歷年量測介於 1.929m~2.380m), 兩站本季測值在歷年變動範圍內。兩站平均潮差相差約 0.43m; 最高潮位麥寮站為+2.445m, 最低潮位為-1.543m; 箔子寮站最高潮位為+2.206m, 最低潮位為-1.234m。	
		2.波浪:2025 年 7~9 月波浪統計(波高單位:m、週期單位:sec)	
		測站 施測 月平均 平均零 最大 對應	
		期間 示性波高 上切週期 示性波高 尖峰週期	
海		THL1 2025/6-2025/8 0.41~0.71 4.5~4.9 2.06 6.0	
		THL1 2025/9/1-2025/9/19 0.34 4.4 1.22 3.6	
象		資料於本季第一次儀器回收後納入此次統計。統計各月資料就完整 6~8 月而言,月平均波高介於 0.41~0.71 米,波高範圍除 7 月因颱風影響時間較長以 0.5~1 米為主,其餘各月以小於 0.5 米為主,主週期各月皆為 4~5 秒,波向西南西轉西。最大示性波高 2.06 米,對應尖峰週期與波向為 6 秒、西北,測於 7 月 7 日 2 時,值 DANAS 颱風中心在台灣本島時期(布袋登陸、桃園新竹交界出海)。統計歷年資料顯示: 2024 年至今除 2024 年 3 月月最大示性波高小於歷年(因東北季風偏弱)與 2024 年 11 月大於歷年(康芮颱風),其餘各月月平均與月最大示性波高皆於歷年變化範圍內。	
7-		3.海流: 2025 年 7~9 月海流統計(流速單位:cm/s、流向單位:方位角)	持續監測
		測站 施測 最大 當時 月淨流 月淨流	
		期間 流速 流向 流速 流 向	
		YLCW 2025/6-2025/8 145.2 N 11.6~15.9 NNE	
		YLCW 2025/9/1-2025/9/19 115.2 N 9.9 NNE	
		統計期間同波浪,各月流速範圍於 25~75 公分/秒約佔 60%,主流向與淨流流向於受洋流帶動偏北。全季最大流速 145cm/s 流向北,測於 7月9日(農曆 6/15),為大潮且 DANAS 颱風往北遠離帶入西南氣流期間所測。另由歷年統計結果顯示:流速於西防波堤興建完成後在一般統計條件(中位數、M2 分潮長軸振幅)略有微幅增加趨勢,近幾年東北季風或颱風期間屢次測得超過 4 節之最大流速值得注意。而根據淨流之統計,2002~2008 年淨流流速與流向分別有減弱與範圍增加之趨勢,因地形與主流向之變化,近期淨流流速與流向之變化明顯趨於較為一致之夏冬季淨流流速較大(洋流與風驅流影響),春秋季淨流流速較小,淨流流向由東北季風期轉夏季由偏南向逆時針向岸往偏北向之趨勢。本年度仍持續近幾年之趨勢。	

1.3 監測計畫概述

本監測計畫各監測類別之監測項目、監測地點、監測頻率、監測方法、監測單位及本季執行監測時間詳如表 1.3-1 所示,現場調查工作執行情形則參見前調查照片。

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形

監測	表 1.3-1 差 監測項目	上海一次一次一次上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海上海	監測		執行監測單位	本季執行
類別	並バスロ	TIE () (1 > 0)	頻率	TEL 1/17/12	7(1) 111/11/11/11	監測時間
氣品質	一氧化碳(CO)、 二氧化碳(SO ₂)、 氮氧化物(NO ₂ / NO _x)、臭氧(O ₃)、 總碳 鱼化合 (THC)、非甲烷 氫化合 (NMHC)、總懸 微粒(TSP)、 微粒(TSP)、 概粒(PM ₁₀)、 壓量、 風向、 風速	1.鎮安府 2.台西國小 3.崙豐漁港駐在所	每季一次	NIEA A421.13C NIEA A416.14C NIEA A417.13C NIEA A420.12C NIEA A740.10C NIEA A102.13A NIEA A206.11C NIEA A216.10C	環興科技(股)公司、 台灣檢驗科技股份 有限公司	114年8月23日~26 日
噪音		 1.安西府 2.海豐橋 3.崙豐國小 4.海口橋 5.五條港出入海管制站 	每季一次	NIEA P201.96C	環興科技(股)公司、 台灣檢驗科技股份 有限公司	114年8月23 ~24日
振動	L _B 、L _夜 及L ₁₀ (24小時)	同噪音	每季 一次	NIEA P204.90C	同上	114年8月23~24日
义通量	四車種之流量及	3.安西府(T字路口三向)		每次連續24小時, 以人工計數。	環興科技(股)公司、 台灣檢驗科技股份 有限公司	114年8月23~24日
陸域動物	1.哺乳類 2.鳥類 3.爬行類 4.兩棲類 5.蝴蝶類	1.新吉 2.海豐 3.五條港 4.三條崙 5.四湖 6.台 7.台子	年共有季季測度計四每監一	2.鳥類為定點及穿 越線調查法 3.兩棲及爬行類採	保育學會	114年9月12-14日 上午監測時間 0630~1200 下午監測時間 1330~1630 夜間監測時間 1830~2230

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 1)

				1)		
陸域植物生態	3.優勢植群	1.新吉濁水溪口 2.海豐蚊港橋 3.台西三塊曆 4.台西 死木麻黄造林地 6.林厝寮混合造林地 7.箔子寮本麻黄造林地 9.台塑北門混合造林地 9.台塑北門混合	年共有季季測,度計四每監一	1.各監測地點設立 20×20 m²、南北向之永久樣區。 2.樣區內再劃為 10×10 m²之小區塊4處,調查自西南區塊 起,依順時鐘方向記錄植物種類及分布。 1.NIEA W217.51A		114年8月23-25日 及9月13日
地下水	1.水溫 2.pH值 3.灣人 3.氣氣 4.濁氣 5.氣氣 5.氣氣 5.氣氣 5.氣氣 6.氣氣 6.氣 6.氣 6.氣 6.氣 7. 8.總 7. 8.總 10. 11. 11. 12. 13. 14. 14. 15. 16. 16. 16. 17. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	民3、民4井及監測井 SS01、SS02	每4次季次)	2.NIEA W217.31A 2.NIEA W424.53A 3.NIEA W203.52C 4.NIEA W219.53C 5.NIEA W413.52A 6.NIEA W407.51C 7.NIEA W448.52B 8.NIEA W210.58A 9.NIEA W530.51C 10.NIEA W506.23B 11.NIEA W311.54C 12.NIEA W311.54C 13.NIEA W311.54C 14.NIEA W311.54C 15.NIEA W311.54C 16.NIEA W311.54C 17.NIEA W311.54C 17.NIEA W311.54C 18.NIEA W311.54C 19.NIEA W311.54C	國立成功大學水工試驗所	114年7月28、29日

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續2)

監測項目 監測地路 監測地路 監測時率 監測方法 軟行監測單位 本季執行 近 2.水源 大事電度 2.有才察係興橋、				۷)			
速 2.水湿 数卷橋下游) 2 NIEA W217.51A 水工試驗所 河 3.導電度 2.有才家術與橋、夢鱗橋) 3 NIEA W203.51B 水工試驗所 水 5.濁度 3. 舊虎尾溪(西湖橋、西湖橋下游) 5 NIEA W219.52C 6 NIEA W455.52C 7 NIEA W510.55B 8 NIEA W210.58A 9.大腸桿菌群 10 象 11. 硝酸鹽魚 12. 亞硝酸鹽魚 11. NIEA W482.52C 12 NIEA W452.52C 12 NIEA W452.52C 13 NIEA W277.53B 14 NIEA W450.50B 15 NIEA W506.23B 16 NIEA W506.23B 16 NIEA W506.23B 17 NIEA W308.22B 18 NIEA W308.22B 18 NIEA W308.22B 19 NIEA W308.22B 19 NIEA W308.22B 20 NIEA W308.22B 20 NIEA W308.22B 20 NIEA W308.22B 21 NIEA W308.22B 21 NIEA W308.22B 22 NIEA W308.22B 23 NIEA W30.52A 24 NIEA W308.22B 25 NIEA W308.22B 25 NIEA W308.22B 25 NIEA W308.22B 27 NIEA ES70.04B 28 NIEA W441.51C 29 NIEA W307.04B 28 NIEA W441.51C 29 NIEA W525.52A 28 NIEA W441.51C 29 NIEA W525.52A 20 NIEA W353.02C/M111.01C 水工試驗所 04 、08 B (2)座童金屬 3 表 (2)經章金屬 3 表 (2)經章金屬 3 表 NIEA W310.64B		監測項目	監測地點	監測頻率	監測方法	執行監測單位	
3. 写電度	附	1. pH值	1.新虎尾溪(蚊港橋、	(1) 每季一次。	1 NIEA W424.53A	國立成功大學	(1)民國114年09月
引	近	2.水溫	蚊港橋下游)		2 NIEA W217.51A	水工試驗所	04、08日
***	河	3.導電度	2.有才寮(新興橋、		3 NIEA W203.51B		
(含 (含 (多 (Л	4.鹽度	夢麟橋)		4 NIEA W447.20C		
(含) 名(本) (含) 7.生化高丸量 (表) 7.生化高丸量 (表) 9.大陽桿菌群 (10. 泉気 (10. 泉気 (11. 研放鹽魚 (12. 亞硝酸鹽魚 (13. 磷酸鹽 (正磷酸鹽) (14. 砂酸鹽 (14. 砂酸鹽 (15. 酚類 (16. 油脂(総油脂) (17. 細 (19. 鉛) (19. 鉛) (19. 鉛) (19. 鉛) (19. 鉛) (19. 鉛) (19. 鉛) (10. 油脂(総油脂) (10. 油脂(総油脂) (10. 油脂(総油脂) (10. 油脂(総油脂) (10. 土田 (10. 土田 (10. 上田 (10. 上田	水	5.濁度	3.舊虎尾溪(西湖橋、		5 NIEA W219.52C		
7 NIEA W510.55B 8 NiEA W210.58B 9 NIEA W210.58B 9 NIEA E202.55B 10. 和意 11. 唱蔵鹽魚 11. 唱蔵鹽魚 11. 唱蔵鹽魚 12. 亞硝酸鹽魚 13. 唱蔵 優(正磷酸鹽) 14. 砂酸鹽 15. 診腫 16. 油脂(總油脂) 17. NIEA W308.22B 18. 編編 19. 総 19. 総 20. 幹 21. 終 22. 神 23. 汞 24. 機 23. 汞 24. 機 23. 汞 24. 機 27. 所EA W308.22B 26. 综 27. 某終素a 28. 象化物 29. 陰離子介面 活性刺 (2) 底質重金屬 1. 別にA W308.22B 20. NIEA W308.22B 20. NIEA W308.22B 21. NIEA W308.22B 22. 內 23. 汞 24. 機 25. 站 26. 除 27. 所EA W308.22B 26. NIEA W308.22B 27. NIEA E507.04B 28. NIEA W341.51C 29. NIEA W355.52A		6.溶氧	西湖橋下游)		6 NIEA W455.52C		
7	(含	7.生化需氧量			7 NIEA W510.55B		
10. 氧氮 11. 埔६ 豐魚 12. 亞 埔	,	8.懸浮固體			8 NIEA W210.58A		
10.		9.大腸桿菌群					
11. 硝酸鹽氮 12. 亞硝酸鹽氮 13. 磷酸鹽(正磷酸鹽氮 14. 矽酸鹽 14. 矽酸鹽 15. NIEA W452.52A 16. NIEA W452.52A 16. NIEA W50.50B 15. NIEA W50.52B 16. 油脂(總油脂) 17. 銅 18. 編 19. 鉛 19. 鉛 20. 幹 21. 4發 22. 神 23. 表 24. 鐵 25. 站 24. 鐵 25. 站 26. 錄 27. 下級EA W308.22B 26. NIEA W308.22B 27. NIEA W308.22B 28. NIEA W308.22B 29. NIEA W308.22B 21. NIEA W308.22B 21. NIEA W308.22B 22. NIEA W308.22B 23. NIEA W308.22B 24. 鐵 25. SIEA W308.22B 25. NIEA W308.22B 26. NIEA W308.22B 27. NIEA ESO7.04B 27. 茶綠素a 28. 氧化物 29. 陰 離子介面 活性劑 (2)底質重金屬 1. 劉、翁、鈞、鉾、 络、錦 2.神 3. 表	,	10.氨氮					
13 NIEA W427.53B 14 NIEA W450.50B 15 NIEA W506.23B 15 NIEA W506.23B 15 NIEA W506.23B 16 NIEA W506.23B 16 NIEA W506.23B 18 NIEA W308.22B 18 NIEA W308.22B 19 NIEA W308.22B 20 NIEA W308.22B 20 NIEA W308.22B 21 NIEA W104.02C 22 NIEA W434.54B 23 NIEA W308.22B 25 NIEA W308.22B 25 NIEA W308.22B 26 NIEA W308.22B 26 NIEA W308.22B 27 NIEA E507.04B 27. 葉綠素a 28. 氰化物 29. 陰離子介面活性劑 (2)底質重金屬 1.銅、縞、鉛、鉾、絡、線 2.神 3. 表 4. 从 1. 及 2. 及		11.硝酸鹽氮					
14 NIEA W450.50B		12.亞硝酸鹽氮			12 NIEA W452.52C		
15 NIEA W521.52A 16 NIEA W506.23B 15 副類 16 油脂(總油脂)		13.磷酸鹽(正磷			13 NIEA W427.53B		
15. 酚類 16. 油脂(總油脂) 17. 銅		酸鹽)			14 NIEA W450.50B		
16.油脂(總油脂) 17.銅 18.編 19.鉛 20.鋅 21.鎔 22.砷 23.汞 24.鐵 25.結 26.鎳 27.附EA W308.22B 26.综 27.联線素a 28.氰化物 29.陰離子介面 活性劑 (2)底質重金屬 1.纲、鍋、鉛、鉾、 络、鎳 2.神 3.汞		14.矽酸鹽			15 NIEA W521.52A		
17 NIEA W308.22B 18 NIEA W308.22B 18 NIEA W308.22B 19 NIEA W308.22B 19 NIEA W308.22B 20 NIEA W308.22B 21 NIEA W104.02C 22 NIEA W434.54B 23 NIEA W330.52A 24 NIEA W308.22B 25 NIEA W308.22B 25 NIEA W308.22B 25 NIEA W308.22B 26 NIEA W308.22B 26 NIEA W308.22B 27 NIEA E507.04B 27		15.酚類			16 NIEA W506.23B		
17. NIEA W308.22B 18. NIEA W308.22B 19. WiEA W308.22B 20. A		16.油脂(總油脂/					
18 NIEA W308.22B 19 NIEA W308.22B 20 AP 20. 44 21. 45 22. 46 23. 表 24. 46 25. 46 27. 第編書a 28. 氰化物 29. 陰 離子介面 活性劑 (2) 底質重金屬 1. 49、 49、 49、 49、 49、 49、 49、 49、 49、 49、		礦物性油脂)					
19.86 19.86 19.86 20.6年 21.46 22.40 23.汞 24.4銭 25.46 26.49 27. 新綠素a 28. 氰化物 29. 陰離子介面 活性劑 (2)底質重金屬 1.銅、編、鉛、鉾、 络、鎳 2.40 2.40 2.40 2.41 2.41 2.42 2.42 2.43 2.43 2.44 2.44 2.44 2.44		17.銅					
20 NIEA W308.22B 20.蜂 21.鎔 22.砷 23.汞 24.鐵 25.鲇 26.鎳 27.蔣綠素a 28.氰化物 29.陰離子介面活性劑 (2)底質重金屬 1.銅、編、鉛、鉾、 鉻、鎳 2.神 3 表		18.鎘					
20.鋅 21.銘 22.NIEA W104.02C 22 NIEA W434.54B 23.末 24.鐵 23. NIEA W308.22B 25. NIEA W308.22B 26. NIEA W308.22B 26. NIEA W308.22B 26. NIEA W308.22B 27. NIEA E507.04B 27. 禁綠素a 28. 氰化物 29. NIEA W525.52A 24. NIEA W525.52A 25. NIEA W525.52A 26. NIEA W525.52A 26. NIEA W525.52A 27. NIEA W525.52A 28. NIEA W525.52A 29. NIEA W52		19.鉛					
21.終 22 NIEA W434.54B 23.汞 24 NIEA W308.22B 24.鐵 25 NIEA W308.22B 25.结 26 NIEA W308.22B 26 NIEA W308.22B 27 NIEA E507.04B 27 禁線素a 28 NIEA W441.51C 29 NIEA W525.52A 29 NIEA W525.52A (2)底質重金屬 1.NIEA 1.網、鍋、鉛、鉾、 48 NIEA W441.51C 29 NIEA W525.52A 29 NIEA W525.52A (2)每半年一次 1.NIEA M353.02C/M111.01C 水工試驗所 3 未 2.NIEA S310.64B		20.鋅					
22.神 23.汞 24.鐵 25.結 25.結 26.鎳 27.NIEA E507.04B 28.氰化物 29.陰離子介面 活性劑 (2)底質重金屬 1.銅、編、鉛、鉾、 鉻、鎳 2.神 3.汞		21.鉻					
23.汞 24.鐵 25.結 25.結 26.鎳 27.葉綠素a 28.氰化物 29.陰離子介面 活性劑 (2)底質重金屬 1.銅、編、鉛、鉾、 络、鎳 2.神 3.汞		22.砷					
24.鐵 25 NIEA W308.22B 26.錄 26.錄 27.葉綠素a 28 NIEA W441.51C 29.陰離子介面 29 NIEA W525.52A (2)底質重金屬 1.9每半年一次 1.銅、編、鉛、鉾、		23.汞					
25.结 26 NIEA W308.22B 27 NIEA E507.04B 28 NIEA W441.51C 29 NIEA W525.52A (2)底質重金屬 1.銅、錦、鉛、鉾、 鉻、鎳 2.砷 3.表 (2) NIEA W308.22B 27 NIEA E507.04B 28 NIEA W441.51C 29 NIEA W525.52A (2)每半年一次 1.NIEA M353.02C/M111.01C 水工試驗所 04、08日		24.鐵					
27.葉綠素a 28 NIEA W441.51C 28.氰化物 29 NIEA W525.52A (2)底質重金屬 (2)每半年一次 1.納、鍋、鉛、鉾、鉻、錦 (2)每半年一次 2.耐 (2)1.NIEA (2)成質重金屬 (2)年半年一次 1.NIEA (2)民國114年09月 (4) (0) (4) (0) 2.NIEA S310.64B		25.鈷					
28.氰化物 29 NIEA W525.52A 29.陰離子介面 (2)底質重金屬 1.納、鍋、鉛、鉾、鉻、錦 (2)每半年一次 2.砷 (2)每半年一次 1.NIEA 國立成功大學 (2)民國114年09月 (4、08日 2.NIEA S310.64B		26.鎳			27 NIEA E507.04B		
29. 陰離子介面 活性劑 (2)底質重金屬 1. MIEA 1. MIEA M353.02C/M111.01C M 工試驗所 (2) 長國114年09月 M353.02C/M111.01C A 工試驗所 (4) 08日		27.葉綠素a					
(2)底質重金屬 (2)每半年一次 1.NIEA 國立成功大學 (2)民國114年09月 1.銅、錦、鉛、鉾、 4 M353.02C/M111.01C 水工試驗所 04、08日 2.砷 2.NIEA S310.64B 2.NIEA S310.64B		28.氰化物			29 NIEA W525.52A		
(2)底質重金屬 (2)每半年一次 1.NIEA 國立成功大學 (2)民國114年09月 1.銅、錦、鉛、鋅、 4 M353.02C/M111.01C 水工試驗所 04、08日 2.砷 2.NIEA S310.64B 2.NIEA S310.64B		29. 陰離子介面					
1.銅、錦、鉛、鋅、 鉻、鎳 2.砷 3.汞		活性劑					
1.銅、錦、鉛、鋅、 鉻、鎳 2.砷 3.汞							
1.銅、錦、鉛、鋅、 鉻、鎳 2.砷 3.汞		(2) 立所壬人屋		(2) 台业生 上	1 NHE A	国士士士上的	(2) R岡114年00日
 		` '		(2)母干干一次			
2.种 3.汞		· ·			M1353.02C/M111.01C	小上 武	U4 \ U8 ¤
3.汞					2 NIE 4 C210 (4D		
3.NIEA M317.04B		'			2.NIEA 5510.64B		
		3.水			3.NIEA M317.04B		

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續3)

監測 類別監測項目監測地點監測頻率監測方法執行監測單位(1)新興區潮間帶 1. pH值 2.水溫 3.導電度 4.鹽度 5.濁度 海 7.生化需氧量N1: 新虎尾溪出海口 N3: 有才察出海口 N4: 台西水開 N5: 舊虎尾溪出海口 4.鹽度 5.濁度 6.溶氧量 7.生化需氧量每季一次 1 NIEA W424.53A 2 NIEA W217.51A 3 NIEA W203.51B 4 NIEA W447.20C 5 NIEA W219.52C 6 NIEA W455.52C 7 NIEA W510.55B	本季執行 監測時間 (1) 民國114年8月21 日
類別 (1)新興區潮間帶 N1:新虎尾溪出海口 每季一次 國立成功大學水工試驗所 1. pH值 N3:有才寮出海口 N4:台西水閘 2 NIEA W217.51A 水工試驗所 3.導電度 4.鹽度 3 NIEA W203.51B 4 NIEA W447.20C 5 NIEA W219.52C 5 NIEA W219.52C 6 NIEA W455.52C	監測時間 (1) 民國114年8月21
1. pH值 N3:有才察出海口 1 NIEA W424.53A 水工試驗所 2.水溫 N4:台西水閘 2 NIEA W217.51A 3 NIEA W203.51B 4.鹽度 4.鹽度 5.濁度 5 NIEA W219.52C 6 NIEA W455.52C	
2.水溫 N4:台西水閘 3.導電度 N5:舊虎尾溪出海口 4.鹽度 4 NIEA W203.51B 5.濁度 5 NIEA W219.52C 6.溶氧量 6 NIEA W455.52C	日
3.導電度 N5:舊虎尾溪出海口 4.鹽度 4 NIEA W203.51B 5.濁度 5 NIEA W219.52C 6.溶氧量 6 NIEA W455.52C	
4.鹽度 4 NIEA W447.20C 5.濁度 5 NIEA W219.52C 海 6.溶氧量 6 NIEA W455.52C	
4.鹽度 4 NIEA W447.20C 5.濁度 5 NIEA W219.52C 海 6.溶氧量 6 NIEA W455.52C	
海 6.溶氧量 6 NIEA W455.52C	
V/0 TV =	
7.4.化康菊县 7.NIFA W510.55R	
/ / 注 / U 而 利 里	
8.懸浮固體 8 NIEA W210.58A	
域 9.大腸桿菌群 9 NIEA E202.55B	
10.氨氮 10 NIEA W448.52B	
11.硝酸鹽氮 11 NIEA W452.52C	
水 12.亞硝酸鹽氮 12 NIEA W452.52C	
13.磷酸鹽(正磷) 13 NIEA W427.53B	
14.矽酸鹽 14 NIEA W450.50B	
質 15.酚類 15 NIEA W521.52A	
16.油脂 16 NIEA W506.23B	
17 14	
17.銅	
10 NHEA W200 22D	
20 NIE A W209 22D	
21 NIE A W202 51 A	
21.络 22.NIEA W303.51A 22.NIEA W434.54B	
22.砷 23 NIEA W330.52A	
23.未 24 NIEA W308.22B	
24.鐵 25 NIEA W308.22B	
25. 針 26 NIEA W308.22B	
26.鎳 27 NIEA E507.04B	
27. 葉綠素a 28. NIEA W433.52A	
28.硫化物 29 NIEA W441.51C	
29.氰化物 30.NIEA W532.52C	
30.8%7月7双ツ火	
	2 (2)民國114年8月21日
1.銅、鍋、鉛、鋅、 M353.02C/M111.01C 水工試驗所	
各、鎮 2. NIEA S310.64B	
2.6申 3. NIEA M317.04B	
3.汞	

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續

4)

監測項目 監測地點 監測頻率 監測方法 執行監測單位 本季報 監測日 (1)海域水質斷面 1. pH值 2.水溫 3. 導電度 4.鹽度 5.濁度 採樣共計有四條斷面 (SEC5、SEC7、SEC9、 SEC7)、 SEC11),每條斷面採取 (依照環評差 2.水溫 2.水溫 4. MIEA W203.51B 4 NIEA W217.51A 5 NIEA W219.52C 5 NIEA W219.52C 6 NIEA W4455.52C 國立成功大學 水工試驗所	寺間
1. pH值 (SEC5、SEC7、SEC9、 2 NIEA W217.51A 水工試驗所 2.水溫 SEC11),每條斷面採取 低潮位以下-10m、-20m 4.鹽度 (依照環評差 4 NIEA W203.51B 4 NIEA W447.20C 水工試驗所 2. NIEA W219.52C 下列四項調查 5 NIEA W219.52C	8月19、20
1. pH值 (SEC5、SEC7、SEC9、 2 NIEA W217.51A 水工試驗所 2.水溫 SEC11),每條斷面採取 低潮位以下-10m、-20m 4.鹽度 (依照環評差 4 NIEA W203.51B 4 NIEA W447.20C 水工試驗所 2. NIEA W219.52C 下列四項調查 5 NIEA W219.52C	
2.水温 SEC11),每條斷面採取 (依照環評差 3 NIEA W203.51B 3.導電度 低潮位以下-10m、-20m 異分析變更, 4 NIEA W447.20C 4.鹽度 之上、下兩層水樣。 下列四項調查 5 NIEA W219.52C	
4.鹽度 之上、下兩層水樣。 下列四項調查 5 NIEA W219.52C	
771.747	
5.濁度 頻率為半年— 6 NIEA W455.52C	
	j
海 6.溶氧量 次) 7 NIEA W510.55B	
7.生化需氧量 1. 大腸桿菌群 8 NIEA W210.58A	
8.懸浮固體 2. 油脂 9 NIEA E202.55B	
域 9.大腸桿菌群 3. 氰化物 10 NIEA W448.52B	
10.氨氮 4. 總有機碳 11 NIEA W452.52C	
11.硝酸鹽氮	
水 12.亞硝酸鹽氮 13 NIEA W427.53B	
13.磷酸鹽(正磷) 14 NIEA W450.50B	
14.矽酸鹽 15 NIEA W521.52A	
質 15.酚類 16 NIEA W506.23B	
16.油脂	
17.銅 17 NIEA W309.22A	
18.鎘 18 NIEA W309.22A	
19.鉛 19 NIEA W309.22A	
20.鋅 20 NIEA W309.22A	
21.络 21 NIEA W303.51A	
22.砷 22 NIEA W434.54B	
23.汞 23 NIEA W330.52A	
24.鐵 24.鐵 25.NHA W200.22A	
25 NIEA W309.22A 26 NIEA W309.22A 26 NIEA W309.22A	
26.鎳 27 NIEA E507.04B	
27. 葉綠素a 28 NIEA W441.51C	
28.氰化物	
29.NIEA W530.51C 39.總有機碳	
30.NIEA E220.51C	
(2)底質重金屬 (2)每半年-1.NIEA 國立成功大學(2)民國114年	8月19、20
1.銅、錦、鉛、鋅、 次 M353.02C/M111.01C 水工試驗所 日	
4	
2. NIEA M317.04B	

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續 5)

監測 類別	監測項目	監測地點	監測頻率	監測方法	執行監 測單位	本季執行 監測時間
海域生態		要近 林域 西	每季一次	溫度部分: 現場以精密度 0.1℃水銀溫度計測 量之 (NIEA W217.51A) 。 鹽度部分: 鹽度部分: 鹽度部事先以標準海水校正與標準之應,利準準之與標準之轉。 以上標準之期。 整度 (Practical salinity scale) (NIEA W447.20C) 。 溶氧量部分: 以多每次採樣,其一次,對與一次,對與一次,對與一次,對與一方。 以內科 計量與定樣,而以表示(NIEA W455.52C)。 即用 計量與定樣,而以表示(NIEA W455.52C)。 即用 計量與定樣,而以表示(NIEA W455.52C)。 即用 計量與定樣,而以表示(NIEA W455.52C)。 如內科 計量與定樣,而以表示(NIEA W424.53A)。 素緣在 a部玻璃纖維濾於 90%丙兩取一次,與一次,與一次,與一數,與一數,與一數,與一數,與一數,與一數,與一數,與一數,與一數,與一數	國大源 立學中 水心	114 年 7月 17日

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續6)

EF Jul	B/ 201			,	払に防	上禾山仁
監測	監測	監測地點	監測頻率	監測方法	執行監	本季執行
類別	項目				測單位	監測時間
海域生態	浮游動植物	雲林站台西附	每季一次	浮游動物部分: 參照環境部環檢所於民國92年公 告之水中浮游植物採樣方法-採水 法(NIEA E505.50C)施行;在每升 海水,經55μm的濾過減,並以Lugol's 家olution數滴固定後,置於褐種, 數單位水體積中之細胞數析工作。 整單位水體積中之細胞對析工作。 經濟類之數量百分比等分析工作。 浮游植物部份: 依海洋浮游動物檢測方法(NIEA E701.20C)施行;以北太平網一至 網在近岸測站則分別進行表層拖網 上海洋學內主 經濟學學 經濟學學 經濟學 經濟學 經濟學 經濟學 經濟學 經	國立中山 資源中心	114年7月17日
		雲林台西附近海域	每季一次	分率(Occurence %)之測定。 依環境部環檢所於民國 93 年公告之 軟 底質 海域 底 棲 生 物 採 樣 通 則 (NIEA E103.20C)施行;以矩形底棲 生 物 採 樣 器 (Naturalist's anchor dredge,網寬 45 公分、網高 18 公分、 網目 0.5 公分)進行平行海岸線的底 棲生物採集。採得樣品現場先以 7% 氯化鎂麻醉樣品後,以冰塊冷藏於冰 箱中。攜回實驗室後,用 70%酒精溶 液固定保存,進行鑑種、種類組成分 析及豐度估計。 依環境部環檢所於民國 93 年公告之	大學水資 源研究中	114年7月17日
		雲 林 台 西 附 近海域	每季一次	依環境部環檢所於民國 93 年公告之 軟底質海域底棲動物採樣通則 (NIEA E103.20C)施行;以每次採集 33 cm×33 cm×15 cm 的泥樣進行篩 選,採得樣品現場先以 7% 氯化鎂麻 醉樣品後,再用 70%酒精溶液固定保 存。攜回實驗室後,進行鑑種、種類 組成分析及豐度估計。	國立中山 大學水資 源中心	114 年 7 月 23 日

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續7)

監測	監測		監測	,	執行監	本季執行
1		監測地點		監測方法		
類別海域生態	刺網漁獲生物	測線一: 網頭 23°41.342N、 120°08.625" E 網尾 23°41.491" N、 120°08.703" E 下網 10:39AM 測線二 網頭 23°42.559N、 120°07.993" E 網尾 23°42.710" N、 120°08.058" E 下網 11:01AM 起網 12:42AM	每半年一	本研究依據環境部公告之海域魚類 採樣通則實施(中華民國 93 年 2 月	國大科 中學源中山洋 中學源中山洋	114 年 7 月 21 日
	仔稚魚	雲林台西附近海域	每季一次	租用當地漁船,以仔稚魚網每季於各 測站沿海岸線平行方向拖撈一網次。 網口加裝流速計,以精確估計實際拖 捞過濾的水體積。	科技大學	114年7月
濟	1.刺網漁業	雲林縣麥寮、台 西、四湖、口湖沿 海四鄉之沿近海	每月	每月至樣本漁戶進行問卷調查	國立成功 大學水工 試驗所	114年7月29 日、8月28 日、9月30日
	1.牡蠣養殖 2.鰻魚養殖 3.文蛤魚養殖 4.鱸魚養殖 5.鯛魚養殖 6.蝦類養殖	雲林沿海四鄉鎮	每季	每季至樣本養殖戶進行問卷調查。	國立成功 大學水工 試驗所	114年9月24- 26日

表 1.3-1 雲林離島式基礎產業園區施工期間環境品質監測辦理情形(續8)

監測	監測			0)	執行監測	本季執行
 	項目	監測地點	監測頻率	監測方法	單位	監測時間
類別		/ ١			· · · · · · · · · · · · · · · · · · ·	
		北自濁水溪口				2025 年航空攝影測量作業進行於 3
		以北約5公里,				月9日,海域地形
		南至外傘頂洲,				
		東至海堤線,西				測量之水深測量
		至水深約25公			國立成功	則自3月11日至
*	冶片	尺,其中沿岸砂			大學水工	4月18日完成,數
海域		洲及灘地之地	<i>t</i> - 1- 1	海底水深測量包括海域水		但地形成未於 0 月
地		形均採航空攝		深測量及沿岸航空攝影		份完成,後續於
形	(. 2) - 2	影測量。範圍外		4		8~10 月完成海陸
		之外海抽砂區				域地形測量報告
		抽砂期間,實際			公司。	成果整理及編撰
		外海抽砂區範				等工作。
		圍亦將納入該				
		年度監測範圍				
		內。				
			(1) E #n #n /n/ -	(1)自動化觀測。		2025/07/01~2025/0
	ulm it	麥尞站(MS)	(1)長期觀測。	(2)監測儀器為壓力式水		9/30
	潮汐	第一致 tr(P/)	(2)資料頻率每	位計。		
			6 分鐘一筆。	(3)每 6 分鐘回傳。		
					國立式功	2025/07/01~2025/0
海			` '	(1)自記式觀測。	因立成功 大學水工	
象	波浪	台西測樁 (THL1)。	(2)資料頻率每	(2)監測儀器為兼具測波	八字小工 討驗的	2.20
		(1ПС1)°	兩小時統計	功能之 ADCP。	可(·例及 //)	
			一筆。			
		台西測樁附近	(1)長期觀測。	(1)自記式觀測。		2025/07/01~2025/0
	海流	(YLCW) •	(2)資料頻率每	(2)監測儀器為ADCP。		9/30
		,	5 分鐘一筆。	(-)		

1.4 監測位址

1.4.1 空氣品質

監測位置係選擇施工區附近具代表性之敏感受體,包括鎮安府、崙豐漁港駐在所及台西國小等3處,可監測新興區及台西區施工期間之空氣品質,測站位置詳**圖1.4-1**。

1.4.2 噪音及振動

測站位置選擇可能受施工或營運噪音及振動影響之敏感受體,本監測共選擇五處測站,測站位置詳**圖 1.4-1** 所示,說明如下:

一、安西府

測站設於安西府入口前之台 17 省道旁,台 17 省道於此處之 路寬 11.4 公尺,屬第二類管制區緊鄰 8 公尺以上道路之交通測站, 本測站為通往台西區五條港及台西海園最近之入口地標。

二、海豐橋

測站設於台 17 省道跨新虎尾溪之海豐橋附近,台 17 於此路 段寬約 18.2 公尺,屬第三類管制區緊鄰 8 公尺以上道路之交通測 站,為台西與麥寮間之主要交通要道。

三、崙豐國小

測站設於崙豐國小前台 17省道旁,西距安西府測站約1公里,台 17省道於此路段寬約 13.5公尺,屬第二類管制區緊鄰 8公尺以上道路交通測站。測站隔台 17省道之另一側為進安府及崙豐國小活動中心,監測值反應當地工商活動聚集、校園活動噪音及台 17省道之交通噪音。

四、海口橋

測站設於台 17 省道跨舊虎尾溪之海口橋附近,北距安西府測站約 2 公里,台 17 省道於本路段寬約 18.0 公尺,屬第三類管制區緊鄰 8 公尺以上道路之交通測站,測站旁有土地祠及慈海宮兩座大、小廟宇。本測站距台西海埔地約僅 200 公尺,將為距台西區最近之噪音測點,未來可反應台西區施工對區外之噪音影響。

五、五條港出入管制站(88年度新增測站)

測站設於五條港漁港駐在所旁,所臨之中央路為台西區工地施工車輛專用道路寬 15.2 公尺,目前屬第二類管制區內緊鄰 8 公尺以上道路之交通測站,為進入台西區工地主要聯絡道路。

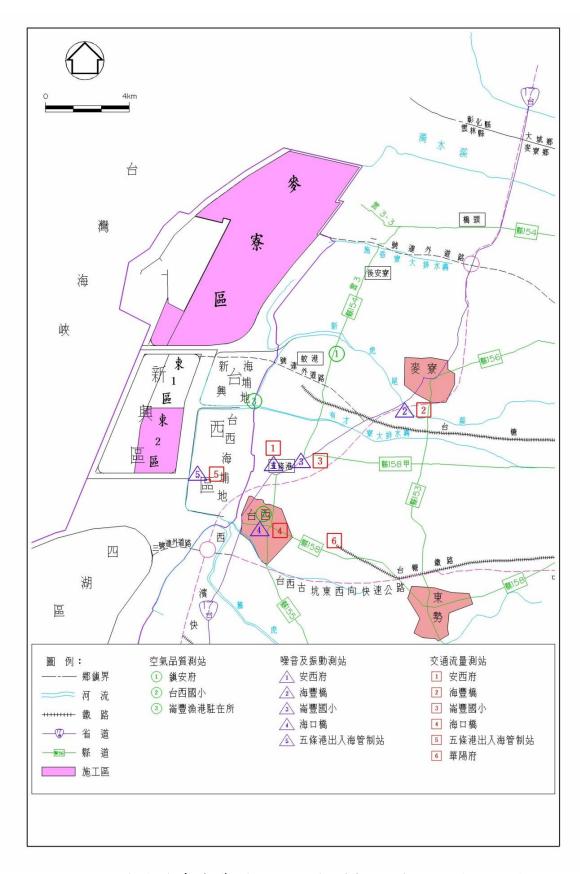


圖 1.4-1 雲林離島產業園區施工期間物化環境監測站位置圖

1.4.3 交通流量

測站位置選擇可能受施工或營運影響之敏感受體,本監測共選擇六處測站,測站位置詳**圖 1.4-1** 所示,說明如下:

一、海豐橋

測站設於台 17 省道跨新虎尾溪之海豐橋附近,台 17 於此路 段寬約 18.2 公尺,為台西與麥寮間之主要交通要道。

二、崙豐國小

測站設於崙豐國小前台17省道旁,西距安西府測站約1公里, 台17省道於此路段寬約13.5公尺,測站隔台17省道之另一側為 進安府及崙豐國小活動中心,監測值反映台17省道之交通噪音。

三、安西府

測站設於安西府入口前之台 17 省道旁,台 17 省道於此處之 路寬 11.4 公尺,本測站為通往台西區五條港及台西海園最近之入 口地標,未來可監測施工區之交通影響。

四、海口橋

測站設於台 17 省道跨舊虎尾溪之海口橋附近,北距安西府測站約 2 公里,台 17 省道於本路段寬約 18.0 公尺,測站旁有土地祠及慈海宮兩座大、小廟宇。本測站距台西海埔地約僅 200 公尺,將為距台西區最近之測點,未來可反映台西區施工對區外之影響。

五、五條港出入管制站

測站設於五條港漁港駐在所旁,所臨之中央路為台西區工地施工車輛專用道路寬 15.2 公尺,目前屬第二類管制區內緊鄰 8 公尺以上道路之交通測站,為進入台西區工地主要聯絡道路。

六、華陽府

測站設於光華村華陽府寺廟旁,所臨之 158 號道路寬 11.2 公 尺,為台西與東勢間主要聯絡要道。

1.4.4 陸域生態

雲林縣屬農業地區,作物除稻米、甘蔗、甘藷外,尚有西瓜、大蒜、大豆、玉米、黄麻等。冬季的東北季風始於 10 月,終至 3 月;夏季西南季風始於 5 月,終於 9 月,降雨較冬季多,山洪時生,年雨量愈西愈少,約 1,500~2,000 公釐,年均溫 $22^{\circ}C~23^{\circ}C$,一月均溫 $16^{\circ}C$,七月均溫 $28^{\circ}C$ 。

一、動物生態

陸域動物生態監測之棲地型態包含潮間帶、防風林、耕作區、養殖區、河口附近、實驗林與內陸地區等不同棲息環境,於新吉、海豐、五條港、三條崙、四湖、台西及台子等地區共設置樣區七處,進行長期監測。各樣區以衛星定位儀定位,各樣區座標及特性略述如表 1.4-1 所示,相關位置示如圖 1.4-2。

表 1.4-1 本監測計畫施工期間陸域動物生態監測位置概述表

樣區位置	座標		棲地型態	植被型態
新吉樣區	175771	2634410	耕地、漁牧區及防風林	木麻黄林及黄槿等灌木
海豐樣區	168563	2628573	沿海養殖區及河口泥灘	草生地
五條港樣區	166219	2624393	海埔地、潮間帶及養殖池 區	木麻黄防風林、短草地
三條崙樣區	164476	2619394	防風林區、魚塭	木麻黄林、試驗林
四湖樣區	170486	2614728	內陸耕作區	蔗田、果樹
台西樣區	164864	2614906	內陸耕作區	短草地、蔥
台子樣區	163801	2607279	水產養殖區、沼澤區	荒地植物及濕地植物

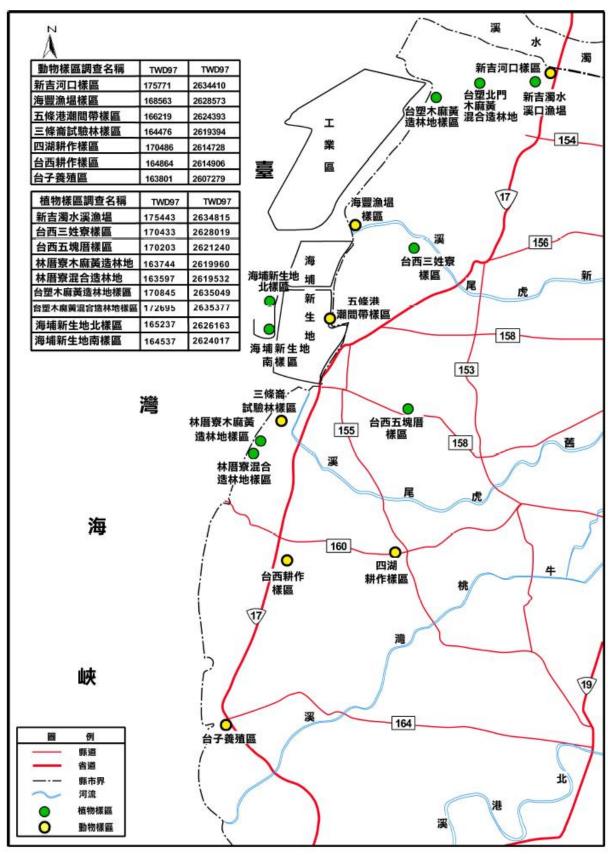


圖 1.4-2 雲林離島產業園區施工期間陸域生態環境監測站位置圖

二、植物生態

陸域植物生態監測依未來產業園區開發區位及植被特性而選擇永久監測樣區 9 處,各樣區之位置如圖 1.4-2,TWD97 座標及其植被屬性如表 1.4-2 所示。

表 1.4-2 本監測計畫施工期間陸域植物生態監測位置概述表

 樣區名稱	TWD	07 应堙	人工植被	天然和	植被
徐四石件	TWD97 座標		人工造林地	草生地	次生林
新吉濁水溪口魚塭樣區	175443	2634815		廢魚塭	
海豐蚊港橋樣區	169962	2628815		廢耕地	
台西三姓寮樣區	170433	2628019	木麻黄造林地		
台西五塊厝樣區	170203	2621240			墓園
林厝寮木麻黄造林地樣區	163744	2619960	木麻黄造林地		
林厝寮混合造林地樣區	163597	2619532	混合造林地		
箔子寮海防哨樣區	161390	2613172		填土荒地	
台塑木麻黄造林地樣區	170845	2635049	木麻黄造林地		
台塑北門混合造林地樣區	172695	2635377	混合造林地		
海埔新生地北樣區*	165237	2626163		填土荒地	
海埔新生地南樣區*	164537	2624017		填土荒地	

^{*}為 101 年 9 月新增樣區,取代已無法監測之第二樣區與第七樣區

1.4.5 地下水水質

目前執行地下水水質監測之監測井計有新興區內之監測井 SS01、新興區東側之台西海埔新生地之監測井 SS02 及外圍 2 口民井(民 3 及民 4),4 口監測井之相關基本資料如表 1.4-3 所示。各井相關位置如圖 1.4-3 所示。

表 1.4-3 地下水監測井(含民井)基本資料

監測	井號	二度分	井深	井徑	井篩位置	管口高程**	設井	
區域	开弧	X(公尺)	Y(公尺)	(公尺)	(英吋)	(公尺)	(公尺)	時間
新興區	SS01	164608.470	2624718.128	15.00	4	-6~ -15	3.145	92 年
台西 海埔地	SS02	165792.488	2624642.135	11.40	2	-5.4~-11.4	0.632	98 年
工業區	民3	168289.000	2626423.000	約 50~60	4	_		
外圍	民 4	166743.000	2624270.000	約 50~60	4	_	_	

附註:* 座標系統為1997台灣大地基準 TWD 97』。

^{**} 管口高程的引測參考點為內政部編號N0042的水準點。

⁻ 表無相關資料。

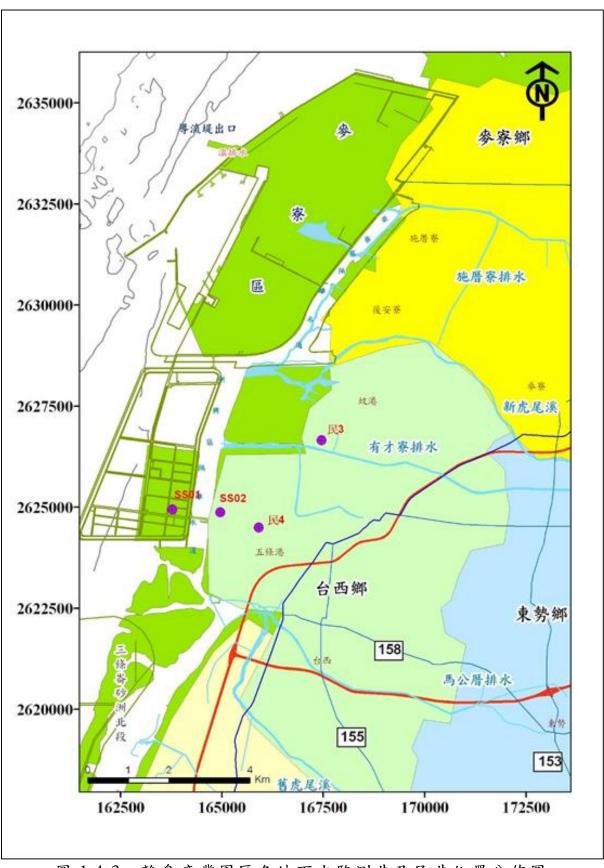


圖 1.4-3 離島產業園區各地下水監測井及民井位置分佈圖

1.4.6 陸域水質

選定之採樣測站包括新虎尾溪、有才寮大排及舊虎尾溪等三排水路,測站位置如圖 1.4-4 所示,共 3 測站。依序為:

一、新虎尾溪:蚊港橋。 二、有才寮大排:新興橋。 三、舊虎尾溪:西湖橋。

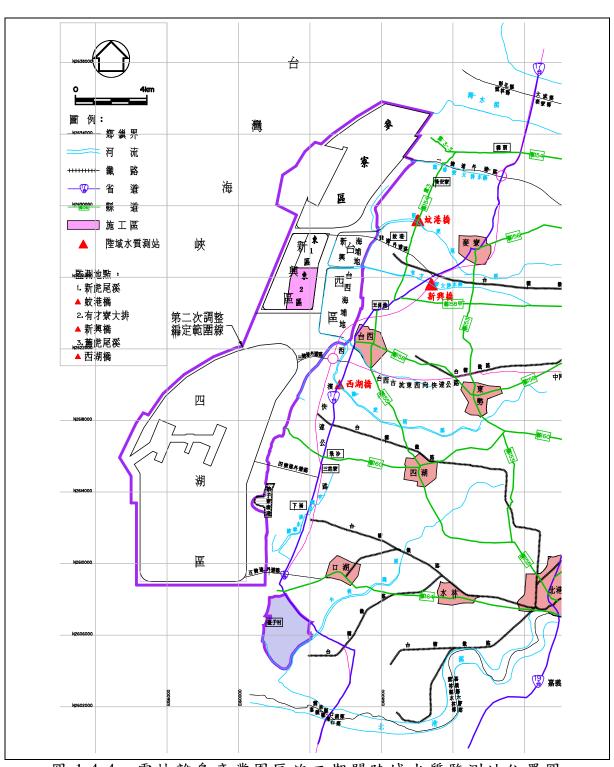


圖 1.4-4 雲林離島產業園區施工期間陸域水質監測站位置圖

1.4.7 河口水質

新虎尾溪(蚊港橋下游)、有才寮大排(夢麟橋)及舊虎尾溪(西湖橋下游)等測點,詳圖 1.4-5。

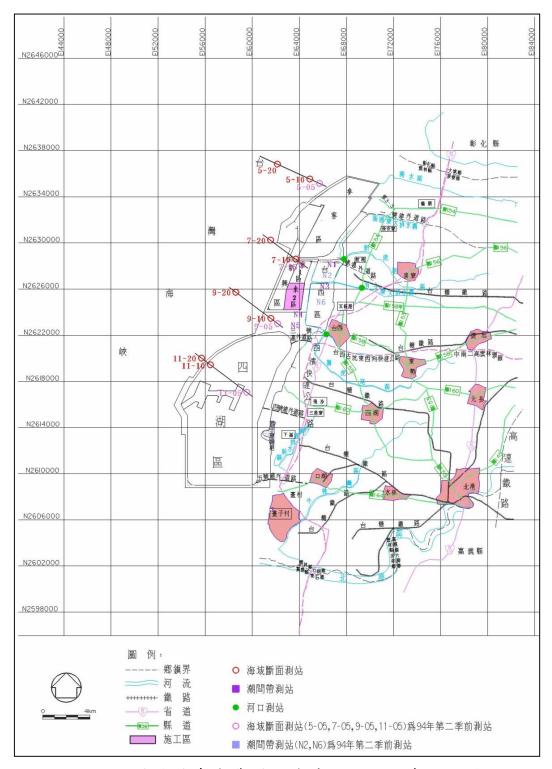


圖 1.4-5 雲林離島產業園區海域及河口調查點位置圖

1.4.8 海域水質

基於雲林台西沿海為臺灣牡蠣養殖產業最主要之採苗區,其提供之 牡蠣苗約佔全臺牡蠣養殖產業所需之 80%,再加上新興區養灘工程可能 造成水體變化,故監測範圍維持北起 SEC5,南至 SEC11 之 20m 水域, 設立 SEC5、SEC7、SEC9、SEC11 等四條斷面,並針對導流堤出口處量 測現場水質項目,以作為若水質發生異常時,其來源判斷參考。此外配 合新興區現況調整,本年度於新興區之新、舊虎尾溪出海處潮間帶區共 設四個長期測點(N1、N3、N4、N5)進行水質調查。

海域依環境部於 90 年 12 月 26 日(90)環署水字第 0081750 號分布之海域環境分類及海洋環境品質標準做比較,本監測海域仍以甲類海域水質為標準,監測結果摘要如表 1.2-1 所示,海域水質與底質監測位址如圖 1.4-6 所示。

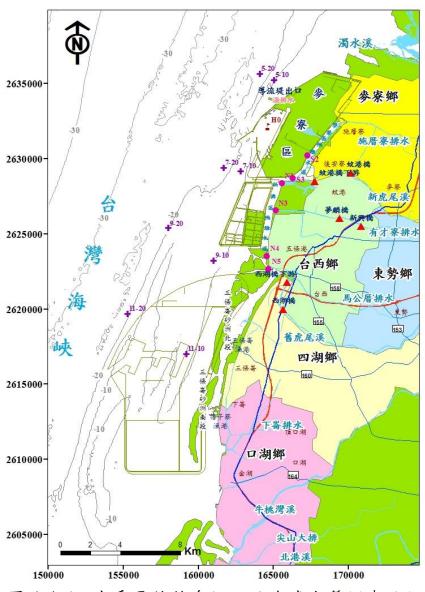


圖 1.4-6 本季雲林離島河口至海域水質調查點位

1.4.9 海域生態

一、浮游生物及水質調查

在雲林縣台西鄉沿海,一年四季,分別於 SEC5、SEC7、SEC9 及 SEC11 等 4 條測線上,於近岸 10 米水深及離岸 20 米水深各設一個測站,共有計 8 個測站,進行浮游生物及水質採樣調查(圖 1.4-7)。

二、亞潮帶底棲生物調查

雲林縣台西鄉沿海的亞潮帶底棲動物調查,一年四季,分別在 濁水溪至北港溪之間的 4 條亞潮帶測線(SEC5、SEC7、SEC9 及 SEC11)之水深 10 公尺及 20 公尺處,共八個測站進行採樣(圖 1.4-7)。

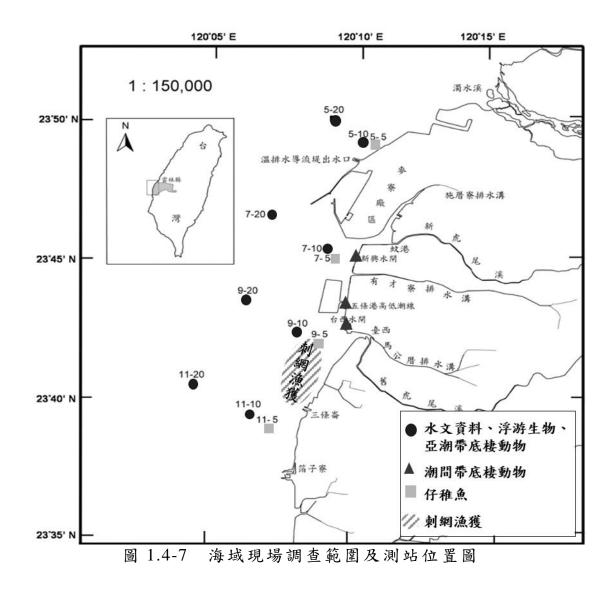
三、潮間帶底棲生物調查

在雲林縣台西鄉沿海,一年四季,分別在三個工作站-台西水閘、五條港(高潮線及低潮線)及新興水閘共四個測點進行採樣。(圖1.4-7)。

四、漁獲生物

雲林縣大約有五條重要河川注海,即,濁水溪、新、舊虎尾溪、牛挑灣溪及北港溪,所以雲林縣外海是為較平緩之砂泥地形。由於海底坡度平緩,又無礁石,因而可適合利用各種漁撈方法採捕,經調查雲林區六處主要漁港(五條港、台西、三條崙、箔子寮、金湖、台子村),得知重要的漁撈方法是流刺網,另有少數的拖網及一支釣作業漁法。然而由於作業漁船為長 20 公尺,寬 4.5 公尺以下之機動塑膠管筏,其漁撈規模多不大;此外,沿海牡蠣的養殖也是雲林縣重要的漁產。就漁業生物而言,雲林沿海是為砂泥海底地形,相較於岩礁地形,生物的歧異度較小,即種類相較岩礁地區種類單純,其生物的體色也較平淡。

本年度的調查研究是受經濟部產業園區管理局委託進行第 34 年計劃,而有關成魚漁獲生物相的調查則是第 29 年,經查閱雲林海域以往漁獲的調查情形,除中華民國台灣地區漁業年報有逐年的發佈漁業種類別、生產量及產值外,另有漁產品全球資訊網(https://efish.fa.gov.tw/)可查詢魚種及漁市場的行情統計。此外,台塑石化股份有限公司曾委託經濟部及國立台灣大學合辦漁業生物試驗所對麥寮附近海域進行海域生態調查,也有報導魚種資料可供參考。漁業年報所發佈的資料是提供評估資源量的重要依據,然而其漁獲類別是以大宗漁獲為主。且漁獲生物採大別歸類,較不易監測出其短期、立


即的漁獲組成變動及漁獲組成與環境變動間互動的影響。而台塑公司委託漁業生物試驗所的調查監測計劃與本調查研究屬同海域。其先前研究成果可提供作為參考資料,再加上本計劃持續性的調查研究,可使本海域得以建立起長期性漁獲生物相之資料。

五、優勢刺網漁獲重金屬濃度調查

本報告是配合執行的漁業生物調查,採集自三條崙漁港出海在台西外 海作業之刺網漁獲水產生物,進行生物體內重金屬蓄積之監測分析。

六、仔稚魚調查

於雲林台西沿海,北自麥寮,南至箔子寮港之間沿水深五~十公尺處共設四個測站(圖 1.4-8)。一年四季,以仔稚魚網每季於各測站進行採樣工作。

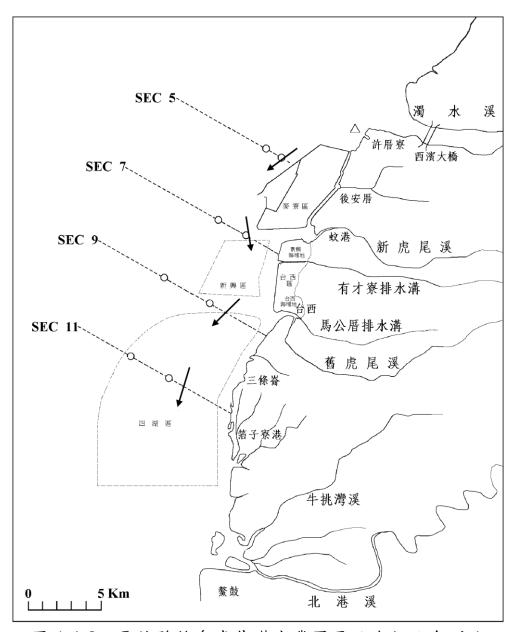


圖 1.4-8 雲林縣離島式基礎產業園區沿海仔稚魚測站

1.4.10 漁業經濟

一、漁獲種類、產量及產值方面

調查每月之固定樣本漁戶問卷調查方式及漁業活動之形態、作業方式 (刺網作業),並蒐集漁業署漁業統計年報中之魚類別及漁業種類別,來推 估當地漁獲產量及產值的變化。

漁獲種類上,因問卷調查資料只能瞭解經濟性之魚種,且獲得的只是 一般的俗名,較不精確,故漁獲種類方面則再配合漁民提供照片或現場訪 視辨識魚種。

二、養殖面積、種類、產量及產值

雲林沿海四鄉鎮主要養殖方式可區分為淺海養殖及內陸養殖,其中淺海養殖是以牡蠣養殖為主。內陸養殖是以鰻魚養殖及文蛤混養為主,而文蛤混養種類為虱目及蝦。因此整個雲林沿海地區皆以牡蠣、鰻魚、文蛤混養為大宗。因此訪問之養殖戶也以上述養殖種類為主,並另外新增鱸魚、鯛魚及蝦類養殖調查。

監測調查位址說明如下:

一、漁獲種類、產量及產值方面

雲林縣沿海漁撈活動監測調查範圍為雲林縣—麥寮、台西、四湖、口湖沿海四鄉之近海及沿岸之漁業活動,每月至於撈樣本戶進行訪查,取得進港漁船作業資訊、漁獲對象、漁獲價格及投入成本等資訊,藉此來取得當地漁獲產量及產值資料。

二、養殖面積、種類、產量及產值

養殖戶調查範圍為雲林縣沿海四鄉鎮—麥寮、台西、四湖、口湖之養殖戶,以固定樣本養殖戶問卷調查的方式,每季不定期至樣本養殖戶進行實地訪查。

1.4.11 海域地形

- 一、範圍:北自濁水溪口以北約 5 公里,南至三條崙漁港,東至海堤線,西至水深約 25 公尺,範圍外之外海抽砂區抽砂期間,實際外海抽砂區範圍亦將納入監測範圍內。
- 二、比例尺:繪製 1/10,000 地形圖。
- 三、精度:海域地形測量採用斷面測法。在三條崙以北、水深 25 公尺以淺的區域,東西向斷面測線間隔每 400 公尺,南北向則每 200 公尺設置一條測線。在三條崙以南及水深 25 公尺以深的區域,東西向斷面測線間隔仍為每 400 公尺,南北向測線間隔則為每 1,000 公尺。測線上每 25 公尺至少記錄一次,若海底地形變化較大,應適當增加測點以提高測量精度。

1.4.12 海象

本監測計畫海流、波浪及海底底質測站位置。

一、潮汐:麥寮站、箔子寮等地。

二、波浪:台西測樁 THL1。

三、海流:台西測樁附近 YLCW。

1.5 品保/品管作業措施概要

1.5.1 空氣品質

- 一、現場採樣之品保/品管
 - (一)確認監測點。
 - (二)流量校正、測漏。
 - (三)各項偵測器校正。
 - (四)現場各工作紀錄(校正)表填寫。
 - (五)現場特殊狀況記錄。
- 二、空氣品質監測品管要求

空氣品質之檢測方法主要以環境部公告方法為主,表 1.5.1-1 為檢驗 室對於空氣品質檢測分析品管要求:

	农工6.11 工术的杂型的 0 0 次的 0 文章							
			品	管	要	求		
檢測項目	流量校正	測漏	零點校正	全幅校正	零點漂移	全幅漂移	臭氧流量	
TSP	0	0	×	×	×	×	×	
PM_{10}	0	0	×	×	×	×	×	
PM _{2.5}	0	0	×	×	×	×	×	
SO_2	0	0	0	0	0	0	×	
NO_x	0	0	0	0	0	0	0	
CO	0	0	0	0	0	0	×	
O_3	0	0	0	0	0	0	0	

表 1.5.1-1 空氣品質監測之各項品管要求

註:表上所列「O」表示須作此項品管要求,「X」則為無須操作。

三、空氣品質監測品保目標

空氣品質之氣狀物監測屬於自動連續監測,為確保分析數據品質保證,必須對於儀器 ZERO、SPAN 及多點校正等相關品保措施,訂定管制範圍分別說明如下:

1.各氣體分析儀器之偵測極限、ZERO與 SPAN 之管制範圍如表 1.5.1-2 所示。

表 1.5.1-2 空氣品質監測之各氣體分析儀器 ZERO 與 SPAN 之管制範圍

項目	ZERO		SPAN
分析儀器	雜訊	飄移	飄移
二氧化硫自動分析儀	<±1 ppb	<±4 ppb	設定值±3.0%
氮氧化物自動分析儀	<±5 ppb	<±20 ppb	<±20 ppb
一氧化碳自動分析儀	<±0.2 ppm	<±0.5 ppm	設定值±2.0%
臭氧自動分析儀	<±5 ppb	<±20 ppb	<±20 ppb

2. 多點校正:

為確保氣體分析儀之持續準確性與精密度,亦對分析儀器作定期之多點校正(六種不同濃度之標準氣體進行測試),以維持其分析品質。而其查核之品保目標,線性斜率(m)為 $0.85\sim1.15$;相關係數值(r)為 ≥ 0.9950 。氣體分析儀 $(SO_2 \setminus NO_x \setminus CO)$ 以六種不同濃度之標準氣體進行準確性測試,每一濃度之實測值與標準值的相對誤差應低於 15%。高速流量器 $(TSP \setminus PM_{10})$ 則以孔口流量校正器設定五種不同之流量進行準確性測試,每一流量之實測值與標準值的相對誤差應低於 10%。

3. 準確性:

- (1)粒狀污染物:粒狀污染物準確性之要求以同批次工作前、後進行隨機流量計校正,與工作月查核採樣條件是否良好,其目的在於判定採樣過程是否有異常之條件改變,以擬補救措施,期使檢測結果更臻準確。
- (2)氣狀污染物:準確性(品管樣品分析回收率):係為 [監測前全幅標準濃度之測值÷全幅標準濃度]×100%,而品保目標為85~115%。

4.精密度:

每季定期測試一次,以自動監測設施滿刻度約20%之標準氣體,進行測試、記錄標準氣體之濃度及監測設施量測值,精密度之相對誤差不得大於10%。

5. 完整性:

(1)粒狀污染物:高速流量器之「有效採樣時數(小時)」不得少

- 於「測定時數(24 小時)的三分之二(即 16 小時)」,其說明如下; 有效採樣時間(小時):
- [(24 小時 無效採樣時間)÷24 小時]×100 % ≥ 66.7 % (即為至少 16 小時為有效採樣時間)。
- (2)氣狀污染物:空氣品質之氣狀污染物監測作業係以自動監測 儀器進行監測,由於現場監測時因供電系統不良或其他因素造成檢 測數據異常(此一異常數據由稽核方式處理後予以捨棄),其可信數 據於一小時內測足 45 分鐘時,即為可使用之小時數據,每日 24 個 小時數據須超過三分之二為可使用之小時數據(即為 16 個小時),則 該日數據即為可使用之數據,其說明如下:
 - a.有效小時之數據:
 - 〔(60分鐘-校正時間-停機時間-稽核捨棄時間)÷60分鐘〕
 - ×100 % ≧ 75 % (即為至少 45 分鐘為有效數據)。
 - b.有效日之數據:
 - [(24小時-不完整之小時數):24小時]
 - \times 100 % \geq 66.7 % (即為至少 16 小時為有效數據)。

6.代表性:

依照環境部公佈之「特殊性工業區緩衝地帶及空氣品質監測設 施設置標準」中的「空氣品質監測採樣口設施設置原則」規定辦 理。

7.比較性:

所有資料與報告必須使用共同單位,以便與其他部門有相同的報告格式,而且可在一致的基準下作比較。依據環境部公佈之「空氣品質標準」中,有關氣狀污染物濃度使用單位為 ppm,而粒狀污染物使用濃度單位為 μg/m³。本計畫空氣品質監測方法主要採用環境部國家環境研究院(NIEA)公告之標準方法,並依照環境部公告「環境保護事業機構管理辦法」規定之品質管制/品質保證步驟進行監測工作。

有關空氣品質監測之分析數據品保目標說明如表 1.5.1-3 所示:

表 1.5.1-3 空氣品質分析之品保目標說明

指標值	(1.3.1-3	準確性		完整性
項目	(相對差異百分比)(%)	品管樣品(%)	野外空白	(≧%)
TSP	_	_	<2MDL	85
PM_{10}	_	_		75
PM _{2.5}	_	_	<30 μg	75
SO_2	0~10	85~115		75
NO_x	0~10	85~115		75
CO	0~10	85~115	_	75
O_3	0~10	85~115		75
Pb	0~20	80~120		
Cd	0~20	80~120		
Cr	0~20	80~120		
As	0~20	80~120		
NH ₃	0~15	70~130	_	75
Cl ₂	_	85~115		75
HF	0~20	85~115	<2MDL	75
HC1	0~20	85~115	<2MDL	75
HNO ₃	0~20	85~115	<2MDL	75
H ₂ SO ₄	0~20	85~115	<2MDL	75
H ₃ PO ₄	0~20	85~115	<2MDL	75
甲苯	0~25	70~130	<2MDL	75
乙苯	0~25	70~130	<2MDL	75
1,2-二氯乙烷	0~25	70~130	<2MDL	75
四氯乙烯	0~25	70~130	<2MDL	75
三氯乙烯	0~25	70~130	<2MDL	75
醋酸	0~15	85~115	<2MDL	95

表 1.5.1-4 空氣品質儀器校正頻率

学四 5 46		1.3.1-4	至		南北 坦 4
儀器名稱	測試項目	頻率	一般程度或注意事項	記錄情形	容許誤差
	功能檢查: (1)時間校對 (2)大氣壓力 (3)環境溫度 (4)濾紙溫度	使用前後	(1)採樣前檢查採樣器顯示時間 (2)工作大氣壓力計置於採樣器同高處處比對 (3)工作溫度計置於採樣器 環境溫度計旁比對 (4)工作溫度計置於採樣器 (4)工作溫度計置於採樣器 減紙匣位置中心下游 1 公 分處比對	內校紀錄	(1)±1 分鐘 (2)±10 mmHg (3)±2 ℃ (4)±1 ℃
懸浮微粒採 樣器 (PM _{2.5})	校正:流量	採運後每單查差-0.668 器過 作流結超~0.668 (L/範圍整流系樣電經程 量果過 採量統器護	利用活塞式紅外線流量校 正器 以採樣器操作流量 16.7 L/min±10%的流量範 圍內, 選擇3個點流量校正點 進行流量校正(多點校正)		多點校正後, 需執行流量 查核
	查核:流量	執行 多點 正後 安 採 樣 結束後	利用店基式紅外線流重校正器 以採樣器操作流量 16.7 I/min,執行流量本校(留點	內校紀錄	採樣器面板 讀值計讀 前差值須 於 0.668~0.668 (L/min)之間
	比對:計時器	每年	與國家標準時間進行比對	內校紀錄	一個月誤差 不超過 1 分 鐘
	維護:保養	採樣前每執行品的採樣後每2週六個月	檢查篩分器 清理篩分器 清潔進氣口 清理遮雨罩下空氣擋板 清潔進氣口空氣濾網	使用紀錄包裹	_

註:每次監測前以皂泡流量計進行校正。

表 1.5.1-4 空氣品質儀器校正頻率(續 1)

	1.5.1	· <u> </u>	机	('8 -1	
儀器名稱	測試項目	頻率	一般程度或注意事項	記錄情形	容許誤差
動態氣體稀釋 器 (空氣品質監測	校正:流量	每年	與可追溯至國家標準實驗 室之參考標準件進行比對	內校記錄	R > 0.995 點流量偏差 ±2%
	校止・流軍	六個月	與可追溯至國家標準實驗 室之參考標準件進行比對	內校紀錄	R > 0.995 點 流 量 偏 差 ±2%
車)	臭氧產生器光 度計比對:準 確度		與可追溯至國家標準實驗 室之參考標準件進行比對	內校記錄	線性誤差≦ 3%
零值空氣產生 器 (NIEA A421 使 用)	比對:準確度	每年	以CO自動分析儀確認CO 濃度	內校記錄	<0.1ppm
零值空氣產生 器 (NIEA A740 使 用)	比對:準確度	六個月	以 THC 自動分析儀確認 THC 濃度	內校記錄	<0.1ppm (以甲烷濃度 計)
	檢查:流量	每工作日	記錄採樣流樣	記錄	± 10 %
	檢查:射源強 度		記錄 β-ray 射源強度	記錄	原廠規範
	校正:流量	每三個	以標準流量計進行流量校 正	內校記錄	± 10 %
	檢查:射源強 度	月	以原廠參考薄膜進行檢查 β-ray 射源強度確認	內校記錄	原廠規範
PM ₁₀ 自動分析 儀(β-ray)	校正:流量	儀器新 設置\故	以標準流量計進行流量校 正	內校記錄	± 10 %
	檢查:射源強 度		以原廠參考薄膜進行檢查 β-ray 射源強度確認	內校記錄	原廠規範
	比對:準確度	對測站/ 測值有 疑義時	以 PM ₁₀ 高量採樣法作數 據數值比對測試	內校記錄	線性回歸: 斜 率 = 1±0.1; 截 距 0±5µg/m³; R ≥0.97

註:每次監測前以皂泡流量計進行校正。

表 1.5.1-4 空氣品質儀器校正頻率(續 2)

	衣 1.3		, 而負俄		
儀器名稱	測試項目	頻率	一般程度或注意事項	記錄情形	容許誤差
NO _× 、SO ₂ 、 CO、O ₃ 、THC 自動分析儀 (空氣品質監 測車)	檢查:準確度	使用前後	零點、全幅(以測定範圍最大濃度之 80%測定範圍)及中濃度(全幅 50%濃度)檢查中濃度檢查:使用前(僅 THC 需執行)使用後(NO _X 、SO ₂ 、CO、O ₃ 、THC 需執行)		NO、O ₃ 零點±20 ppb 全幅±20 ppb 中濃±20 ppb SO ₂ 零點±4 ppb 全鴻 中濃 CO 零點=±3% CO 零點=±0.5 ppm 全幅±0.8 ppm 中濃 ppm THC 零幅=±0.8 ppm 中濃 ppm THC 零點=±0.8 ppm 中濃 (CO、O ₃ 、THC 後 養 園內
	校正:準確度	新器 儀 羅經 人 在	以全幅濃度之 0%、20%、 40%、60%、80%、100% 等六種不同濃度之校正	內校記錄	R > 0.995
	清潔保養		保持內部及散熱風扇濾網清潔,並注意各接頭是	_	_
	維護:濾紙更 換	7 117 2	否鬆脫	_	_
	檢查:NO ₂ 轉 化率	每年	進行 NO ₂ 轉化率測試	內校記錄	轉化率>96%
	檢查:NMHC 去除率	六個月	以丙烷標準氣體進行 NMHC去除率測試	內校記錄	NMHC 全幅±1.2 ppm
	檢查:反應時 間	六個月	通入氣體後,儀器讀值到 達最高穩定之 90%處所 需時間	內校記錄	小於 2min
	测光闪白为江	. p . l . l . l	1		

註:每次監測前以皂泡流量計進行校正。

1.5.2 噪音

1.5.3 振動

現場採樣之品保/品管

- (一)依法規選擇適當測定位置及高度(低頻噪音須於室內量測)。
- (二)使用聲音校正器校正,偏差須小於±0.7 dB(A)。
- (三)設定開始及結束的時間或以手動開始或結束。
- (四)測定終了後,再使用聲音校正器校正,偏差須小於±0.7 dB(A)。
- (五)將記錄器內磁片,妥善保存攜回實驗室。
- (六)輸送過程終了時,磁片交接給樣品管理員檢查並登錄。

噪音、振動由儀器現場加以分析,分析時除架設高度、位置須符合設站原則距地面高 $1.2\sim1.5$ m,儀器檢測前、後須進行電子式內部校正及聲音校正器做外部校正,同時分析數值噪音必須逐時記錄其 L_5 、 L_{10} 、 L_{50} 、 L_{90} 、 L_{95} 等相關分析數值,振動必須逐時記錄其 L_{v5} 、 L_{v10} 、 L_{v50} 、 L_{v90} 、 L_{v95} ,營建工程噪音(全頻及低頻)則以二分鐘採樣時間,求出二分鐘最大值 L_{max} 及 L_{eq} 平均值並於檢測報告中註明營建機具、噪音計編號、類別及起迄時間,並須填寫『噪音振動現場紀錄表』。

1.5.4 交通量

車型、流量交通流量調查中,工作小組將依計畫工作進度及所指定地點,派遣具實務經驗的人員執行。調查人員採兩人為一組配合手錶、計數器或攝影器材進行調查,連續 48 小時進行調查(含假日、平常日),車型分為機車、小車(含小客車、小貨車)、大車(含大客車、大貨車)、特種車(貨櫃車、消防車、救護車等)等四種車輛進行調查。

- (一)工作人員確實記錄車輛型式及數量。
- (二)現場紀錄確實填寫及畫下簡圖。

主要儀器及設備之校正頻率,如表 1.5.1-1~表 1.5.4-1 所列。

表 1.5.4-1 噪音振動儀器校正頻率

	衣 1.3.4-1	宋 百 旅 助 俄 品 仪 止 娛	<u> </u>
儀器 名稱	校正方法	校正頻率	儀器廠牌/型號
熙 音 計		1.每次使用前後校正 2.每二年送外校(低頻 每年1次)	RION/NL-31 RION/ NL-32 RION/NL-52
振動計	每次使用前由使用 者校正 每二年送合格校正 機構執行校正 (可追溯到國家標準)	1.每次使用前後校正 2.每二年送外校	RION/VM-55
聲音校正器	每年送合格校正機 構執行校正 (可追溯到國家標準)	1.每次使用前後校正 2.每年送外校	RION/NC-74
振動校正器	每年送合格校正機 構執行校正 (可追溯到國家標準)	1.每次使用前後校正 2.每年送外校正	RING-IN/VP-303
風速、風向自動測定儀	每二年送合格校正 機構執行校正 (中央氣象局儀器檢 校中心)	每二年	APRS/6000

分析項目之檢測方法

本計畫將執行空氣品質、噪音、振動、交通流量的取樣及檢測分析,因此,正確的分析數據乃是環境檢驗工作的重要目標。空氣品質監測一般是藉由自動儀器直接分析樣品,所以操作人員必須經過嚴謹的訓練,才能在現場正確有效的操作儀器,使儀器性能處於最佳狀態,方能獲得可信賴的數據,所有分析方法均須符合環境部公告之規定。

數據處理原則

一、數據紀錄、填寫原則

本計畫進行相關檢測分析時,檢測人員必須隨時將檢測數據正確的 記錄於數據紀錄表中,包含計畫編號、計畫名稱、分析日期、檢量線製 作濃度、方法編號、儀器名稱、樣品編號、樣品分取處理量、稀釋倍 數、檢測數據、品管樣品結果計算、品管數量、使用人時及黏貼頁碼 等。同時應將品管結果繪製於品質管制圖表中。數據填寫以原子筆或鋼 筆為原則,不可使用鉛筆;記錄錯誤時,必須直接畫一橫線,同時簽 名,以示刪除,不可使用修正液或橡皮擦拭去。

檢測人員完成檢測分析之後,須將數據紀錄表及品質管制圖表填寫完全,簽名後連同儀器記錄之列印數據交給數據查核員,經查核驗算後,數據紀錄表影印縮小黏貼於工作日誌上,黏貼於工作日誌上的表格須加蓋騎縫印。數據紀錄表原稿及儀器記錄之列印數據原稿,則依檢測項目分類存檔。數據紀錄表、品質管制圖表及工作日誌皆屬保密紀錄,列入責任交接,其所有權屬實驗室所有,檢測人員非經許可,不得私自攜出。

二、數據處理原則

檢測人員於配製藥品、執行分析、數據記錄、及計算結果的過程中,所得之數字皆有其意義存在,實驗室採行國際單位系統表示檢驗結果。通常對龐大數字,冠以字首,例如: 10^6 (M)、 10^3 (k)、 10^{-1} (d)、 10^{-2} (c)、 10^{-3} (m)、 10^{-6} (μ),以簡化數字。環境分析水質樣品,常以 ppm(10^{-6} ,parts per million)或 ppb(10^{-9} ,parts per billion)表示;固體樣品以 ppm 表示 mg/Kg、以 ppb 表示 μ g/Kg;同時,習慣上若樣品濃度為 0.05 mg/L,可表示為 50 μ g/L;若濃度大於 10,000 mg/L,則可表示為大於 1%。

有效位數及小數位數修整原則,依環檢所 99.03.05 環檢一字第 0990000919 號公告內容要求辦理,即四捨六入五成雙來處理小數位數

之方式。

三、數據查核規定

- (一)所有數據(含樣品濃度、品管數據及管制圖表)均由專人驗算、 核對,查核無誤後,驗算人員須於數據紀錄表中簽名。
- (二)計畫執行期間的相關表格,須由實驗室主任確認查核。
- (三)工作日誌(Notebook)及試藥配製本由實驗室品保主管及實驗室 主任每月審核一次,其審核之目的在於檢查該工作日誌及試藥 配製本之填寫是否正確、數據是否合理、以及日常例行之品管 是否遵循規定。
- (四)品質管制圖表 (Control Chart)由實驗室品保主管及實驗室主任 每季審核一次,其審核之目的在於檢查各檢測項目之管制圖表 製作情形及管制圖表反應之趨勢是否正常、數據是否合理以及 日常例行之品管是否遵循規定。
- (五)實驗室主任定期查閱工作日誌以及所有檔案的回顧與查核。

1.5.5 陸域生態

一、現場採樣之品保/品管

(一) 陸域動物生態監測調查

1、哺乳類

哺乳類調查主要採穿越線目視法及穿越線捕捉法 2 種方法進 行調查。

- (1) 穿越線目視法:沿各樣區設置穿越線,於上午7時起至下午6時天色昏暗前,以7~10倍雙筒望遠鏡,進行觀察記錄哺乳動物的活動、活動痕跡、排遺與屍體骨骸。於夜間則以EM3 蝙蝠偵測器,監聽蝙蝠發出之超音波。
- (2) 穿越線捕捉法:本次調查於各樣區沿穿越線佈置 15cm×15cm×25cm之 Shermans 氏捕鼠器;每個捕鼠器至少 間隔10~15m。其內放置沾有花生醬之蕃薯及油炸食品為誘 餌。陷阱設置隔夜,於翌日清晨記錄捕捉之動物種類、性別 及測量形質,隨即於原地釋放。

2、鳥類

鳥類相調查以 LEICA APO77 20 倍單筒望遠鏡及 LEICA 8 倍雙筒望遠鏡為工具,輔以鳥鳴聲辨識鳥種。現場調查係以兩人一組,採穿越線法調查行經路線兩側之鳥種及數量,行進速度每小時約 1.5 公里,以目力所及之鳥群全數辨識完畢為原則。鳥類中文名、生息狀態及特有性依據中華民國野鳥學會所發表之臺灣鳥類名錄 (楊玉祥等,2020)。

歧異度分析使用 Shannon 歧異度指數(Shannon-Wiener's diversity index(H')),計算方式如下:

$$H' = -\sum \left(\left(\frac{n_i}{N} \right) \ln \left(\frac{n_i}{N} \right) \right)$$

ni:某種個體數 N:所有種個體數

3、兩棲類、爬蟲類

爬行類調查採目視遇測法,白天以搜尋樹幹、撥動草叢、翻開石塊或木板等方式搜尋爬行類蹤跡,並以望遠鏡搜尋水塘水面及邊緣堤岸尋找龜鱉目動物蹤跡。道路所發現被輾斃之動物亦列入記錄。夜間記錄以產業道路路面、房舍牆面及路燈附

近為主,輔以動物鳴聲辨識種類。

4、蝶類

調查方法以目視法為主,若以目視法無法判別種類時,輔 以掃網法捕捉鑑別。

- (1) 目視法:於上午 8~11 時及下午 2~5 時蝴蝶活動較頻繁時間, 於樣點附近選取約 50 公尺長之穿越線,沿穿越線以其上方 及左、右各 5 公尺帶狀範圍,以 3 km/hr 的速度進行目視觀 察,記錄各蝶種出現之隻次。
- (2) 掃網法:以直徑 45 公分之軟質紗網捕捉目視法不易辨識之 蝶種,捕捉後與圖鑑比對鑑別種類,隨即釋放。

(二) 陸域植物生態監測調查

1、上層植群調查

調查樣區內所有胸高直徑(DBH)大於 1 公分及樹高大於 1 公尺之植物,所有植株均編號標註並鑑定種類,記錄其樹高、胸徑及分叉,作為長期監測之觀察基準。現場無法鑑定之植物,以攝影或採樣攜回實驗室比對;需依據花、葉等特徵辨識之植物,於花期與新葉生長期核對原鑑定之正確性。

2、下層植群調查

調查各樣區內所有下層地被植物種類及分布,配合上層植物位置繪製分布圖,並進行上層植群之 2 次查證。地被植物之豐富度 (cover-abundance) 及群居性 (sociability) 依據 Braun-Blanquet 之判別法界定,由植物鑑定組記錄並由繪製組現場查證繪製分布圖。Braun-Blanquet 之植物社會判別標準如表 1.5.5-1 所示。

表 1.5.5-1 Braun-Blanquet 植物社會特徵界定表

	れ 1.5.5 1 Dittuil Dittinduct 位 物 本 目 内 欧 介 之 衣										
級別	豐富度(cover-abundance)	級別	群居性(sociability)								
r	一株或很少植株	1	單株個別生長								
+	偶見的,並小於樣區總面積之5%	2	少數植株成小群或小叢								
1	個體較多,覆蓋度小於樣區總面積之5%	3	小斑塊、墊狀或大叢生長型								
2	個體很多,覆蓋度占樣區總面積6%- 25%	4	生長成大斑塊、地毯狀或破碎蓆狀								
3	覆蓋樣區總面積的26 _ 50%	5	大群或大片蓆狀生長覆蓋整個樣區								
4	覆蓋樣區總面積的51 _ 75%										
5	覆蓋樣區總面積的76 _ 100%										

二、儀器維修校正項目及頻率

陸域生態環境樣區使用衛星定位系統(GPS)係 Holux CF GPS Receiver GM-270型,最多可同時接收12顆衛星,位置小於2.2公尺時水平誤差在95%,位置小於5公尺時垂直誤差在95%,誤差範圍於5-25公尺,無SA碼。平均熱開機時間8秒鐘,衛星信號被遮蔽時間小於25分鐘內,待衛星訊號接收後即可開始定位。座標紀錄與相片基本圖座標位置校正確定無誤後,各季監測均將重行校正之。

三、數據處理原則

植物生態調查之上層植群分析包括各植物種類在樣區內之相對密度、 相對優勢度(以胸高斷面積表示)及重要值指數(IVI),其計算方法如下:

相對密度(%)= 樣區內某植物株數 樣區內全部植物株數

重要值指數(IVI) = 相對密度 + 相對優勢度

1.5.6 河口、海域、底泥、地下水水質

一、現場採樣作業步驟與採樣之品保/品管

每次採樣之前,由採樣負責人收集現場相關之漲、退潮資料, 擬定採樣計畫,並由樣品管理員準備採樣所需之容器及裝備。出發 採樣前一日,須先檢查採樣瓶的數目、所需的用具、藥品、表格和 儀器(pH 計、DO 計、導電度計、透明度板及地下水與底泥採樣設 備等)是否與採樣所需相符合。所有的儀器均需先檢查功能並測試 電池電力。以下為採樣相關之事項說明:

(一) 樣品標籤

樣品容器應事先依照各個分析項目的要求,仔細以水清洗或酸洗,經乾燥後備用。採樣準備時,檢驗室將填寫好的標籤, 黏貼於樣品容器上。標籤上應記錄計畫名稱、採樣日期、點位名稱、樣品編號、檢測項目(如生化需氧量、酚類等)、保存條件及採樣人員等。若須添加保存劑者亦須註明使用保存劑劑量。

(二) 現場採樣紀錄

記錄現場採樣狀況,包括採樣日期、採樣人員姓名、時間、 天況等,以及樣品的特殊狀況如顏色、臭味。現場量測的項目(如 水溫、pH值、溶氧量、導電度、鹽度與海水透明度)需隨採樣進 度逐項量測與填寫,必要時加註現場當時的特殊情況。

(三) 採樣方式

樣品採集時,採樣人員應依據不同類別的採樣標準作業程序進行採樣,以期取得代表性之樣品。樣品採集裝瓶後,再依規定的保存方法運回檢驗室。其他採樣相關之注意事項如下:

- 感潮河段採集高、低潮位之樣品時,應在高潮位或低潮位的前 後共1.5小時內完成採樣工作。不同河寬或河水深度則依採樣 標準作業程序之規定執行。
- 以貝勒管進行地下水採樣時,貝勒管在井中的移動應力求緩緩上昇或下降,以避免造成井水之擾動,而造成氣提或氣曝作用。
- 3. 每次盛裝樣品前,須先以該點位相同的樣品清洗採樣瓶內部 多次後,才能裝瓶(方法規定不可清洗者除外),並留意瓶上標 籤和採樣點位是否吻合。

- 4. 盛裝如總有機碳樣品時,應裝滿樣品並趕除瓶內氣泡,且避免 劇烈震盪。
- 5. 樣品裝瓶後,隨分析項目的不同將指定之保存劑加入(若有需要),然後旋緊蓋子,以冰塊保存於暗處。須注意不可讓冰水進入採樣瓶中,並避免日光直射。
- 6. 使用分注器(dispenser)加保存劑時,須先檢查分注器上藥劑的設定量和採樣瓶上標籤所列的種類和添加量是否一致。若不慎加錯保存劑,須將瓶中樣品倒掉,並以新鮮的原樣品清洗採樣瓶內部多次,然後再裝瓶。若方法規定不可清洗之採樣瓶加錯保存劑,則須另取乾淨備瓶盛裝樣品。

(四)樣品運送及管理

採樣完成後,採樣人員應仔細清點所採樣品數量及所攜設備,並檢查樣品是否包裝妥當,現場紀錄表於簽名後連同樣品送回檢驗室。樣品管理員收樣時應清點樣品數量是否相符,檢查樣品保存箱內溫度計顯示值是否符合規定、盛裝樣品容器是否密封完整,且採樣人員是否依規定貼上樣品封條並簽名及日期。其後再以酸鹼試紙抽測已酸化或鹼化水樣之pH是否符合規定,之後再將上述查驗結果記錄於樣品運送接收管理表。若無立刻需進行分析之樣品則送入冰庫以4℃±2℃冷藏。

樣品管理員收取樣品後,應將樣品分析項目記錄於樣品管理紀錄表中。分析者取樣分析時,必須於樣品管理紀錄表中填寫分析人員姓名,檢項分取量及分取日期以便於樣品管理及追蹤。

(五)樣品處理與保存

由於樣品會因化學性或生物性的變化而改變其性質,故採樣與檢測間隔的時間愈短,所得的結果愈正確可靠。若樣品取得後不能立刻檢測,則需以適當的方法保存以確保樣品原有之物理化學性質,保存方法包括 pH 控制、冷藏或添加試劑等,以降低生物性的活動及成分的分解、吸附或揮發。本所檢驗室對樣品之處理與保存,乃參照環境部所公告之檢驗方法。茲說明如後(表1.5.6-1)。

表 1.5.6-1 本計畫各檢驗項目的採樣容量與保存方法

様品 基質	項次	檢測項目	採樣容量(mL)	容器	保存方法	保存期限
坐貝	1	水溫	1000	—/G/P	現場測定	立即分析
	2	pH 值	1000	G/P	現場測定	立即分析
	3	導電度	1000	—/G/P	現場測定	立即分析
	4	鹽度	1000	-/G/P	現場測定	立即分析
	5	遊及 溶氧量	1000	G/P	現場測定	立即分析
	6	透明度	1000	- U/F	現場測定	
	7		1000	G/P	1 1 1	立即分析
	8	氧化還原電位 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3000/250	P	現場測定 D	立即分析
	9	濁度	250	P	D D	48 小時
		總溶解固體物	3000	P P	D D	7天
	10	懸浮固體		S-B		7天
	11	大腸桿菌群	約 530 3000	S-B	D D	24 小時
	12	生化需氧量	3000	P	Ъ	48 小時
	13	油脂	1000	G	S-D	28 天
	L.,	礦物性油脂(油脂≥2.0 mg/L 加測)				
	14	氣鹽		_	_	28 天
	15	氟鹽(以 F ⁻ 計)	1000	P	D	7天
	16	硫酸鹽				7天
	17	葉綠素 a	1000	暗色 P	採樣 24 小時內過濾, 濾紙<-10℃暗處冷藏 (NIEA E507)	28 天 若水樣 pH<7 即刻分析
	18	矽酸鹽			D	28 天
河	19	正磷酸鹽	500/250	G	D	48 小時
口/海	20	硝酸鹽氮	500	P	D	48 小時
海域	21	亞硝酸鹽氮	300	r	Б	46 小吋
域/地	22	氨氮	1000*2/1000/250	G/P	S-D	7天
下	23	酚類/總酚	1000*2/1000	G	S-D	28 天
下水水	24	陰離子界面活性劑	500/250	P	D	48 小時
介質	25	總硬度	250	P	N-D	7天
	26	砷				180 天
	27	汞			N-D (執行河口/海域採樣時,依計	14 天
	28	總鉻(W303)	5000/2000/1000	P		180 天
	29	銅、鍋、鉛、鋅、鎳、鉻、鐵、鈷、錳、銦、 鉬			畫需求現場加硝酸保存)	180 天
	30	總有機碳△	40*4/40*2	G (瓶蓋附鐵氟龍內襯的棕色 玻璃瓶)	S-D (避免於封瓶時有氣泡殘留)	14 天
	31	氰化物△	1000*3/1000	P	OH-D	14 天
	32	硫化物△	500/250	P	A-OH-D	7天
	33	揮發性有機物△	40*6/40*4	G (瓶蓋附鐵氟龍內襯的棕色 玻璃瓶)	H-D (避免於封瓶時有氣泡殘留)	14 天
	34	半揮發性有機物△	1000*3/1000	G (瓶蓋附鐵氟龍內襯的棕色 玻璃瓶)	D	7天內萃取 萃取後 40 天 內完成分析
	35	總石油碳氫化合物(C6~C9) ^Δ	40*6/40*4	G (瓶蓋附鐵氟龍墊襯的棕色 玻璃瓶)	D	14 天
	36	總石油碳氫化合物(C10~C40) ^Δ	1000*3/1000	G (瓶蓋附鐵氟龍內襯的棕色 玻璃瓶)	D	14 天內萃取 萃取後 40 天 內完成分析
		銅、鎬、鉛、鋅、鉻、鎳	約 500 g	夾鏈袋	D	180 天
底泥	38	砷		G		
	39	汞	約 250 g	- (瓶蓋附鐵氟龍內襯的棕色 玻璃瓶)	D	28 天

^{- :}無特殊規定。

G :玻璃瓶 P:塑膠瓶 G/P:玻璃瓶或塑膠瓶 S-B:無菌袋 D :暗處,4℃±2℃冷藏。

S-D:加硫酸使樣品之 pH<2,暗處, $4^{\circ}C\pm2^{\circ}C$ 冷藏。 N-D:加硝酸使樣品之 pH<2,暗處, $4^{\circ}C\pm2^{\circ}C$ 冷藏。 H-D:加鹽酸使樣品之 pH<2,暗處, $4^{\circ}C\pm2^{\circ}C$ 冷藏。

OH-D:依規定以碘化鉀-澱粉試紙及醋酸鉛試紙測試後,加氫氧化鈉溶液使樣品 pH 至 12.0~12.5,暗處,4°C±2°C冷藏。

A-OH-D:每100mL樣品加入4滴醋酸鋅溶液,再加氫氧化鈉溶液使樣品pH>9,暗處, 4° C± 2° C冷藏。

檢測項目一欄中標註 號者表示該容器由該年度委外檢測廠商提供

二、檢驗室分析工作之品保與品管:

有關各項檢測項目分析品管作業詳如表 1.5.6-2 所示,並分述如下:

(一)方法偵測極限(MDL)

1.分析方法

- (1)以去離子水配製七個預估偵測極限 1~5 倍的樣品
- (2)製作標準濃度檢量線
- (3)七個樣品依實驗步驟分析之
- (4)由檢量線求得七個樣品的個別濃度
- (5)3 倍 SD 值即為初估之 MDL
- (6)以(5)項所得之濃度配置七個樣品,重複步驟(2)~(5),求得新的 SD 值。確認 SD \star 2 /SD $_{\Lambda}$ 2 <3.05 後,以公式求出該項實驗的 值測極限如下:

公式:Spooled=【
$$(6SD^2 + 6SD^2 +)/12$$
】 $^{1/2}$ 溶液 中之 MDL=2.681(Spooled)

(7)已有 MDL 檢項,可參考前一次之 MDL 直接進行確認之步驟。

2.分析頻率

原則上每年分析一次。

(二) 空白樣品分析

1.分析方法

將檢驗室的去離子水(或依方法規定),依檢驗方法分析之, 所得之結果為空白樣品值。此值之高低代表分析過程中,包括 實驗器皿、試藥、環境、儀器與實驗技巧,所導致之誤差程度。 空白樣品應與欲檢驗之樣品同時分析,空白值並應小於 2 倍 MDL(或依方法規定)。未達此標準之實驗應再重新處理並分析 之。

2.分析頻率

每十個樣品為一實驗批次,分析一個空白樣品。

(三) 查核樣品分析

1.分析方法

以檢驗室之去離子水配製已知濃度之標準查核樣品,再依檢驗方法分析。若配製查核樣品與檢驗為同一人,則須由不同來源分別配製標準濃度檢量線與查核樣品。此項分析目的在監控實驗分析之準確度。查核樣品應與欲檢驗之樣品同時分析,由所得之結果計算回收率。若查核樣品未達管制標準,則此批樣品須重新處理。此外,本檢驗室每年均定期以美國 ERA 公司/Sigma-Aldrich 公司或其他同級之 QC 標準品當做盲樣測試檢驗室檢驗人員。

2.分析頻率

水質類為每十個樣品為一實驗批次,底泥類則依據環境部 各檢項方法規定數量分析一個查核樣品。

3.計算百分回收率

回收率(R,%)=(分析值/真實值)×100% 管制標準依檢測方法規定或檢驗室品管圖而定。

(四) 重複分析

1.分析方法

將一樣品取二等分,依相同前處理及分析步驟,針對同批 次中之一樣品執行兩次以上的分析(含樣品前處理、分析步驟)。 由同樣重複分析之差異值可得知實驗結果的精密度。

2.分析頻率

每十個樣品為一實驗批次,取一個重複樣品,再計算其分析差異百分比值(RPD%)。

3.分析差異百分比值計算

 $RPD\% = [(|X_1 - X_2|)/(1/2(X_1 + X_2))] \times 100\%$

管制標準依檢測方法規定或檢驗室品管圖而定。大腸桿菌群則以重複分析測值之對數差表示。

(五)添加樣品分析

1.分析方法

將同一樣品分為兩份,一份直接依檢驗方法分析之,另一 份添加適當濃度之標準品後分析。由兩部份分析所得之結果, 計算添加標準品之回收率。此分析目的為了解所使用的檢驗方法是否適用於欲分析之樣品,是否有嚴重干擾的情況發生。

2.分析頻率

水質類為每十個樣品為一實驗批次,底泥類則為二十個樣品為一實驗批次,取方法規定的添加樣品分析,再計算其回收率。

3.添加樣品回收率計算

回收率(R,%)=【 $((C1\times V1)-(C2\times V2))/(C3\times V3)$ 】×100%

C1:添加後樣品濃度 V1:添加後總體積

C2: 樣品濃度 V2: 樣品體積

C3:添加濃度 V3:添加體積

管制標準依檢測方法規定或檢驗室品管圖而定。

(六) 其他說明

懸浮固體、總溶解固體物、大腸桿菌群及 pH 值分析,每一樣品均做二重複,其他項目則參照品管說明。

表 1.5.6-2 本計畫各檢項之品管頻率及檢量線管制範圍

	表 1.5.6-2 本計畫各檢項之品官頻率及檢量線官制範圍										
樣品 基質	項次	檢驗項目	檢量線	方法偵 測極限	空白 樣品	查核 樣品	重複樣品	添加樣品	運送空白	現場空白	設備空白
	1	水溫	× ⁽¹⁾	×	×	×	O ⁽¹⁾	×	×	×	×
	2	pH值	×	×	×	×	О	×	×	×	×
	3	導電度	×	×	×	×	О	×	×	×	×
	4	鹽度	×	×	×	×	О	×	×	×	×
	5	溶氧量(電極法)	×	×	×	×	О	×	×	×	×
	6	透明度	×	×	×	×	О	×	×	×	×
	7	氧化還原電位	×	×	×	×	О	×	×	×	×
	8	濁度	×	×	О	О	О	×	×	×	×
	9	總溶解固體物	×	×	О	×	О	×	×	×	×
	10	懸浮固體	×	×	О	×	О	×	×	×	×
	11	大腸桿菌群	×	×	О	×	О	×	О	×	×
i, T	12	生化需氧量	×	×	О	О	О	×	×	×	×
河口/海域/地下水水質	13	油脂(油脂≥2.0 mg/L分析礦物性油脂)	×	×	О	О	×	×	×	×	×
地下	14	氣鹽	×	О	О	О	О	О	×	×	×
水水	15	氟鹽	r≥0.995	×	О	О	О	О	×	×	×
貝	16	硫酸鹽	r≥0.995	О	О	О	О	О	×	×	×
	17	葉綠素a	×	×	О	×	×	×	×	×	×
	18	矽酸鹽	r≥0.995	О	О	О	О	О	×	×	×
	19	正磷酸鹽	r≥0.995	О	О	О	О	О	×	×	×
	20	硝酸鹽氮	r≥0.995	О	О	О	О	О	×	×	×
	21	亞硝酸鹽氮	r≥0.995	О	О	О	О	О	×	×	×
	22	氨氮	r≥0.995	О	О	О	О	О	×	×	×
	23	酚類	r≥0.995	О	О	О	О	О	×	×	×
	24	陰離子界面活性劑	r≥0.995	О	О	О	О	О	×	×	×
	25	總硬度	×	О	О	О	О	О	×	×	×
	26	砷	r≥0.995	О	О	О	О	О	×	×	O*(2)
	27	汞	r≥0.995	О	О	О	О	О	×	×	O*

表 1.5.6-2 本計畫各檢項之品管頻率及檢量線管制範圍(續 1)

_		1									
樣品 基質	項次	檢驗項目	檢量線	方法偵 測極限	空白 樣品	查核 樣品	重複 樣品	添加 樣品	運送 空白	現場 空白	設備 空白
	28	總鉻(W303)	r≥0.995	r≥0.995	О	О	О	О	О	×	×
	29	海水中銅、鎬、鉛、 鋅、 鎳、 鐵、 鈷 (W308/W311)	r≥0.995	r≥0.995	О	0	О	О	0	×	×
		銅、鎘、鉛、鋅、 鎳、鐵、錳、銦、 鉬 (W311)	r≥0.995	r≥0.995	0	O	0	О	О	×	×
河口/海域/地下水水質		銅、鎘、鉛、鋅、 鎳、鐵、鉻、銦、 鉬 (M104,比對用)	r≥0.995	RF RSD<2 0%	О	O	0	О	О	0	O*
水質	30	總有機碳△	r≥0.995	r≥0.995	О	О	О	О	О	×	×
	31	氰化物△	r≥0.995	r≥0.995	О	О	О	О	О	×	×
	32	硫化物△	r≥0.995	О	О	О	О	О	×	×	×
	33	揮發性有機物△	RF RSD<20%	О	О	О	О	О	×	×	×
	34	半揮發性有機物△	RF RSD<25%	О	О	О	О	О	×	×	×
	35	總石油碳氫化合物 (C6~C9) [△]	CF RSD≤20%	О	О	О	О	О	×	×	×
	36	總石油碳氫化合物 (C10~C40) [△]	CF RSD≤20%	О	О	О	О	О	×	×	×
底泥		銅、鍋、鉛、鋅、 鉻、鎳	r≥0.995	О	О	О	О	О	×	×	О
	38	砷	r≥0.995	О	О	О	О	О	×	×	О
	39	汞	r≥0.995	О	О	О	О	О	×	×	О
	· . ·										

註:

- 1.×表示不執行;O表示執行(分析)。
- 2.標示"*"者僅針對地下水水質及河口水質製備標示項目的空白樣品。重金屬(含砷、汞、總鉻)檢項需製作設備空白及揮發性有機物需製作現場空白及設備空白備查。若地下水樣品檢測值超過地下水第二類污染管制標準20%以內須分析上述製備之空白樣品。
- 3.標示"Δ"表該檢項委託具環境部認證之檢測單位(中環科技事業股份有限公司,環署環檢字第020號)。

三、儀器維護校正項目及頻率

本計畫檢驗室之主要儀器維護校正項目及週期如表 1.5.6-3 所示。

表 1.5.6-3 本計畫主要儀器維護校正項目及週期

-E L				維護校正項日及週期	1+ + 101 Hn	/H +>-
項次	儀器名稱	維護項目	維護週期	校正項目	校正週期	備註
1	pH 計	1.清潔機身	每2週	1.視樣品 pH 值範圍以標準	使用前	使用人
		2.清洗電極	使用時	緩衝液 pH2、pH4、		
	WTW	3 電極以 3M KCl 保存	使用後	pH7、pH10 與 pH13 執		
		(pH 及 ORP 專用)		行連續 3 點(4 點)校正		
	pH 315(徳國)(數量 1)	4.電極以含 TISAB	使用後	2.溫度檢查	每3個月	儀器負責人
	Suntex	之低濃度氟鹽標準液		(同工作温度計)		
	TS-100(台灣)(數量 1)	(0.05mg/L)保存		3.以 ORP 標準液檢查	使用前	使用人
	WTW	(氟鹽專用)		電位值: 220mV±25mV		
	pH 315i(德國)(數量 2)	(),((ORP 專用)		
	WTW			(014 4,44)		
	pH 3110(德國)(數量 1)					
	WTW					
	pH 3210(德國)(數量 3)					
	WTW					
	pH 3310(德國)(數量 1)					
	Suntex					
	TS-2(台灣)(數量 1)					
	(ORP 專用)					
	Suntex					
	TS-1(台灣)(數量 3)					
	(ORP 専用)					
	Suntex					
	TS-110(台灣)(數量 2)					
	(氟鹽專用)					
2	溶氧儀	1.清潔機身	每2週	1.系統自我校正	使用前	使用人
	WTW	2.清潔電極,電極套筒	使用後	(0%與 100%)		
	Oxi3210(德國)(數量 4)			2.斜率 0.6~1.25(WTW)	使用前	使用人
	Oxi330i(德國)(數量 1)			5.9%/μA ~12.6%/μA(YSI)	100,111	12717
	0/113301(心图)(处至1)	水高之 BOD 瓶中(YSI)		3.零點校正(YSI)	毎月	BOD 檢測人員
	YSI	3.更換電極棒薄膜	視情況	4.零點確認(WTW)	毎月	BOD 檢測人員
		4.充填電極液	視情況	5.與滴定法比較檢查	毎月	BOD檢測人員
	0100(八百)(<u>3</u> (至 2)	1.70天电化水	PO IA VO	6.溫度檢查	每3個月	儀器負責人
				(同工作溫度計)	母 3 個月	成品只貝人
				7.與工作溫濕度氣壓計比對檢查	使用前	使用人
3	精密恆溫培養箱	1.檢查設定溫度	使用期間	//兴工作/ // // // // // // // // // // // // /	12/11/11	使用人
	相	[1.] _	及管理員
	<u>隆盛</u> C-180		右 7 油		_	及官 理 貝 管 理 員
		2.清潔機身內外	每2週			
4	(台灣)(數量 1)	3.清點內部物品	每3個月	1 四數學時人內面但立以十	从田 丛	管理員
4	原子吸收光譜儀	1.清洗燃燒台、霧化室	毎月	1.調整燃燒台與靈敏度檢查	使用前	使用人
	火焰式 Parlain Florer	2.清潔燈管室	每月	2.光學系統		維護:
	Perkin Elmer	3.更換廢液管路及廢液桶	•	3.氣體燃燒控制系統		管理員及廠商
		4.清潔機身外殼	每2週	4.電子電路系統	每6個月	
	(美國)(數量 1)	5.燃燒混合室清潔	每6個月	5.電子電路信號測試	每6個月	
		6.霧化器細部清潔		6.靜態系統測試	每6個月	厰商
	PinAAcle 900F	7.點火安全系統檢查	每6個月	7.標準品及吸光片測試	每6個月	
	(美國)(數量 1)	8.霧化器及混合室清洗潤滑	視情況			
	原子吸收光譜儀	1.更換石墨管	視情況	1.標準品及吸光片測試	每6個月	使用人
	石墨爐式	2.更換洗滌瓶內去離子水	使用前	2.溫度調整測試	每6個月	
	Perkin Elmer	3.擦拭自動注入器	每2週	3.能量校正		管理員及廠商
	PinAAcle 900T	4.更換冷卻循環水	每6個月	4.內部氣體流速測試	每6個月	10 年只久顾问
	AS900	4. 史揆令⑪循環水 5. 更換空氣濾心		5.吸收能力測試	每6個月	払 正・
		· -				
	(美國)(數量 1)	6.石墨管接觸環維護	母 0 個月	6.鉻信號測試	每6個月	敞 冏

表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 1)

項次	儀器名稱	維護項目	維護週期	校正項目	校正週期	備註
4	原子吸收光譜儀	1.清潔酸鹼管路	使用前	1.靈敏度測試	使用前	使用人
	氫化還原設備	2.更換酸鹼管路	視情況			維護:
	Perkin Elmer	3.清洗氣液分離器	視情況			管理員及廠商
	PinAAcle 900T	4.活門保養檢查	每6個月			
	(FIAS 400)	5.馬達轉速保養檢查	每6個月			
	(美國)(數量 1)	6.氣體流速保養檢查	每6個月			
	Perkin Elmer	7.石英管清洗檢查	視情況			
	PinAAcle 900F					
	(FIAS 400)					
	(美國)(數量 1)					
5	汞分析儀	1.清潔酸鹼管路		1.汞標準液之靈敏度測試	使用前	使用人
	Perkin Elmer	2.更換酸鹼管路		2.汞標準液之穩定度測試	每6個月	維護:
	FIMS 400	3.清洗氣液分離器	視情況			管理員及廠商
	(美國)(數量 1)	4.活門保養檢查	每6個月			
		5.馬達轉速保養檢查	每6個月			校正:
		6.氣體流速保養檢查	每6個月			廠商
		7.石英管清洗檢查	視情況			
		8.更換活性碳吸附器	每年			
6	感應耦合電漿	1.清潔 Torch、Injector 及進樣	每月	1.錳靈敏度與鉛、硒比檢查	使用前	使用人
	原子發射光譜儀	總成				維護:
	(ICP-OES)	2.清潔蠕動幫浦及更換蠕動	視情況	2.光學系統	每6個月	管理員及廠商
	Perkin Elmer	幫浦軟管		3.氣體燃燒控制系統	每6個月	
	Optima 8000	3.檢查霧化器有無阻塞	視情況	4.電子電路系統	每6個月	校正:
	(美國)(數量 1)	4.檢查進樣總成 O-ring 狀態	視情況	5.電子電路信號測試	每6個月	廠商
		5.檢查各氣體流量是否正常	視情況	6.Torch 校準	每6個月	
	Perkin Elmer	6.清潔燃燒室及殘留樣品托盤	每6個月	7.儀器商校正規範中之	每6個月	
	Avio 220 Max	7.更换點火系統濾網	每6個月	各標準液測試		
	(美國)(數量 1)	8.檢查 Shear Gas Cutter(氣切	每6個月			
		器)是否阻塞				
		9.檢查絕緣 Bonnet 是否完整	每6個月			
		10.檢查 ICP 電力來源是否正常	每6個月			
		11.清潔各觀測模式之石英視窗	每月			
		12.檢查光學鏡片是否清潔	每6個月			
		13.更換光學系統冷卻風扇濾網	每6個月			
		14.清潔冷卻循環機濾網及	每6個月			
		Tank,並檢查冷卻液狀況				
		15.檢查空壓機是否運作正常	每6個月			
		16.檢查空壓機之外接濾水器	每6個月			
		是否運作正常				
		17.檢查氫氣壓力是否在 80~	使用前			
		100PSI				
		18.檢查抽風設備是否運作正常	使用前			
		19.檢查氫氣潤濕器水位是否	使用前			
		正常				
7	氣相層析質譜儀	1.清潔儀器	每2週	1.質譜儀質量校正	變更設備	使用人
	(GC-MS)	2.清洗離子源	視情況	(Tunning Check)	任何條件後	
	AGILENT			2.系統真空度檢查	變更設備	使用人
	7890B-5977B				任何條件後	
	(美國)(數量 1)			3.質譜儀調校狀態查核	每批次	使用人
				(BFB Pass)	<i>E</i> 1	4 77 1
				4.檢量線查核	每批次	使用人
				5.注射口持壓	毎年	廠商
				6.壓力測量	毎年	廠商
				7.OVEN 溫度測量	毎年	廠商
				8.MS 調機	毎年	廠商
				9.Sgnal-to-Noise Test	每年	廠商
				10.Injection Precision/Mass	毎年	廠商
				Ratio Precision Test		

表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 2)

項次	儀器名稱	維護項目	維護週期	校正項目	校正週期	備註
8	吹氣補捉系統	1.清潔儀器	每2週	1.溫度檢查	使用前	使用人
	(PURGE&TRAP)	2.自動吸取器取樣針筒	視情況	2.壓力檢查	使用前	使用人
	TEKMAR	3.管路潤洗	更換試劑水後	3.清洗桶槽試劑水存量	視情況	使用人
	ATOMX XYZ	4.更换氣化管	視情況	檢查		
	(美國)(數量 1)	5.更换脱附管	視情況			
9	電子天平	1.清潔秤盤與機身內外	使用後	1.零點檢查	每次稱量前	使用人
	METTLER AB 204	2.避免日照、震盪及接近	使用期間	2.刻度校正	每月	儀器負責人
	(瑞士)(數量 1) sartorius	磁性物質	/+ m +n 88	2 壬 生 目 上 エ	E (M D	或管理員
	BSA224S-CW	3.防止氣流	使用期間	3.重複性校正	每6個月	儀器負責人 或管理員
	(徳國)(數量 5)			4.重複性與線性量測	毎年	双官互员 (至少)TAF
	sartorius			11主夜江六咏江主州	7	認證合格校
	TE3102S					正機構
	(德國)(數量 1)					
	sartorius					
	BCE-4202					
10	(徳國)(數量 1)	4 m 1 k k 1 m 1 h	70 1± 10	4 - 1 - 5 - 4 14 +	- 11 -	11 14 a -bb-
10	純水製造機	1.預濾管柱更換	視情況	1.面板電阻值檢查 ≥16MΩ	每工作日	維護:廠商
	MILLIPORE 30 PLUS	2.RO 管柱消毒	顯示值判斷	_	每工作日	個公仏本・
	(美國)(數量 2)	3.儲水槽消毒清洗 4.純化管柱更換	每6個月 顯示值判斷	2.設定溫度檢查 3.檢查 rejection	每工作日	例行檢查: 管理員
	(天國(数重 2) ELIX35	5.無菌過濾器更換	視情況	rate %值>90%	4-11-1	占任只
	(美國)(數量 1)	6.紫外光殺菌燈更換	毎年	14te 70 <u>Re</u> 20070		
	ELIX10	(A10 機型)	3 1			
	(美國)(數量 1)	7.漏水斷路器檢查	每月			
	Milli-Q SP					
	(美國)(數量 1)					
	Milli-Q A10					
	(美國)(數量 2) IQ 7000					
	(美國)(數量 1)					
11	無菌操作台	1.清潔機身內外	每2週			管理員
	欣翔	2.落菌量測試	每3個月			使用人
	6VT	3.UV 燈更換	毎年			廠商
	(台灣)(數量 1)	4.主濾網	每使用 4000	_	_	廠商
			小時或視情況			ne no e de de la
		5.預濾網	毎使用 250			儀器負責人
		6.風速檢測	小時或視情況 毎年			或廠商 認證合格檢
		U.) 3、1 个	女十 一			認證合格檢測機構
12	BOD 恆溫培養箱	1.檢查設定溫度	使用期間			冷城 傳 管理員
	TIT	(以校正過的高低溫溫度計	DZ/4 /911-4			
	TL-520R	量測)		_	_	
	(台灣)(數量 1)	2.清潔機身內外	每2週			管理員
	玉春秋	3.清點內部物品	每3個月			管理員
	ALT-800					
	(台灣)(數量 1)					
	隆盛 C-560					
	(台灣)(數量 1)					
13	<u>烘箱</u>	1.設定溫度(以校正過的溫	使用期間	1.溫度校正	毎年	(至少)TAF
	欣千祥	度計量測)				認證合格校
	DO-2					正機構
	(台灣)(數量 1)	2.清潔機身內外	每2週			管理員
	OEH-270					
	(台灣)(數量 3)					
	JA-72 (台灣)(數量 1)					
<u> </u>	(口/月八数里1)					

表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 3)

項次	儀器名稱	維護項目	維護週期	校正項目	校正週期	備註
14	流動注入分析儀	1.清潔輸液管路	使用後			使用人
	Lachat	2.更換輸液管路	視情況			維護:管理員
	Quikchem	3.檢查調整及清理光學系統	每6個月			及廠商
	8500 series	4.檢查調整及清理電子電路系統	每6個月			
	(美國)(數量 1)	5.調整及清潔光纖電纜	每6個月	_	_	
		6.檢查調整光源	每6個月			
		7.檢查更換反應模組孔閥及 O-ring	每6個月			
		8.濾光鏡 Filter 及 Cell 槽清潔維護	每6個月			
		9.潤滑及管路更換(自動進樣系統、 蠕動幫浦)	每6個月			
15	排氣櫃	1.清潔機身內外	毎2週			管理員
13	(台灣)(數量 7)	2.檢查沉降桶水面高度為	視情況			管理員
	(口乃八奴里/)	15~20 公分及清除底部積泥	700月70	_	_	15年只
		(限附有集塵桶者)				
		3.更换活性碳	每6個月			廠商
16	分光光度計	1.清潔機身		1.儀器自我診斷,檢量	使用前	使用人
	SHIMADZU			線製備	2. 2	
	UV-1700			2.吸光度校正	每3個月	校正/檢查:
	(日本)(數量 1)			3.標準玻片波長校正		儀器負責人、
	UV-1800			(Holmium Filter)		管理員或檢驗
	(日本)(數量 3)			4.迷光檢查	每3個月	人員
				5.樣品吸光槽配對	每3個月	
				6.線性檢查	視情況	
17	水浴加熱槽	1.清潔槽體內外	每2週			管理員
	B-20	2.維持槽內液面高度	每次使用			使用人
	(台灣)(數量 1)			_	_	
	B-35TE					
18	(台灣)(數量 1)	1	5 2 vm			壮田 ,
10	高壓滅菌釜	1.清潔機身內外	每2週			使用人
	HIRAYAMA	2.以滅菌指示帶確認滅菌(溫度)	每次使用			使用人
	HVE -50	功能(HVE-50、HG-50 機型)	左加口			4 111 1
	(日本)(數量 1) HG-50	3.以經校正之留點溫度計量測,	每個月			使用人
		確認滅菌時之最高溫度是否到				
	(日本)(數量 1) REXALL	達 121℃(HVE-50、HG-50 機型) 4.以生物指示劑測試滅菌效果	后 2 畑口			法 田 1
	LS-2	4.以生物指示劑測試滅困效未 (HVE-50、HG-50 機型)	每3個月	_	_	使用人
	LS-2 (台灣)(數量 1)	[(HVE-30、HG-30 機型) [5.進行滅菌時,滅菌釜內的壓力上	每3個月			使用人
	(日/月/(数里 1) LS-2D	3.進行 滅 国 时, 滅 国 金 内 的 屋 刀 工 一 升 至 15lb/in2 且 温 度 為 100℃ 時	サラ四月			及用人
	(台灣)(數量 1)	# # 1510/mi2 且				
	[日何久效里]	循環應在 45 分鐘內完成				
		(HVE -50、HG-50 機型)				
		6.功能維護保養	毎年			廠商
19	桌上型離心機	1.清潔機身內外	毎2週			管理員
	HETTICH			_	_	
	ROTOFIX 32A					
	(徳國)(數量 1)					
20	導電度計	1.清潔機身	每2週	1.系統自我檢查	使用前	使用人
	WTW	2.清潔電極		2.單點檢查	使用前	使用人
	Cond 330i	3.電極乾燥保存	使用後	3.全刻度校正	每年	儀器負責人
	(徳國)(數量 1)					
	Cond 3210					
	(德國)(數量 4)					
	Cond 3310 (海國)(數量 1)					
	(德國)(數量 1)					

表 1.5.6-3 本計畫主要儀器維護校正項目及週期(續 4)

	仪 1.3					
項次	儀器名稱	維護項目	維護週期	校正項目	校正週期	備註
21	濁度計	1.避免刮傷試瓶	使用時	1.系統檢查(與第二	使用前	使用人
		2.清潔機身	使用後	標準品檢查 5%以內)		
	2100P			2.全刻度校正	每3個月	儀器負責人
	(美國)(數量 3)			3.第二標準品校正	每3個月	儀器負責人
	2100Q					
	(美國)(數量 3)					
22	蒸餾設備	1.清潔設備內外	每2週			管理員
	-	2.保持加熱包內部清潔	每次使用	_	_	使用人
	(台灣)(數量 4)					
23		1.清潔板面與機身	使用後	1.面板均溫性檢查	每年	儀器負責人
	(台灣)(數量 3)	2.清潔溫度探棒	使用後	2.溫度探棒與標準	每年	儀器負責人
				溫度計比對檢查		
24	真空濃縮裝置	1.測定加熱溫度	使用時			使用人
	1	2.清潔機身	每2週	_	_	管理員
		3. 更換加熱鍋內去離子逆滲透	視情況			使用人
	ML-G3XL	水	3m 3dr			使用人
		4.清洗冷凝管	視情況			
25	組織均質機	1.清潔機身	每2週			管理員
	GLAS-COL K44			_	_	
	(美國)(數量1)					
26	· . ·	1.保持清潔	使用後	1.多點溫度校正	初次使用前	1 1
		2.存放防潮箱		(含冰點檢查)	/每年	認證合格校正機構
	0~200°C				<i>b b</i>	m 11 # - P
27	-200~1372(數位式)	a balli da	.,,	2.冰點檢查	毎年	器材管理員
27	工作溫度計	1.保持清潔	使用後	1.多點溫度校正		器材管理員
	-50~50°C 0~50°C			2.以參考溫度計做單點	每6個月	器材管理員
				或冰點或視需要做		
	0~100°C 0~150°C			多點檢查		
	0~130 °C 0~200°C					
28	砝碼 E2 級	1.保持清潔乾燥	使用後	1.質量檢查	毎年	(至少)TAF
	· ·	2.存放防潮箱		只生1以旦	4 T	認證合格校正機構
	10g	2. 11 %~1% (1/4 /IR				1000年1101人工工1八八件
	100g					
	200g					
	1kg					
20	2kg		.,,		_ ,	
29	參考溫濕度氣壓計	1.保持清潔乾燥	使用後	1.多點壓力刻度		(至少)TAF
	TEM TEM-1160			2.大氣壓校正	每6個月	認證合格校正機構
	1EM-1100 (台灣)(數量 1)					
30	工作溫濕度氣壓計	1 但技法激战师	使用後	1.多點壓力刻度	5 年	(至少)TAF
30	工作温燃度氣壓計 TEM	1.你付消涤钇烁	火用後	11. 夕) 平	(至少)IAF 認證合格校正機構
	TEM-1160			2.大氣壓校正	每6個月	
	(台灣)(數量 4)			4.八本/王/以上	- 中 0 四 万	儀器負責人
	(口(7)(水王 1)					

四、分析項目之檢測方法

本計畫各檢項分析方法及依據如表 1.5.6-4 所示。

表 1.5.6-4 本計畫各檢測項目方法及依據

日 中小水温 水温 水温 水温 水温 水温 水温 水温	様品 基質	項次	檢驗項目	檢驗方法	方法依據	方法偵測極限	檢測地面 水	檢測地下水
		1	◎ ⁽¹⁾ 水溫	水温檢測方法	NIEA ⁽²⁾ W217.51A	(3)	V	V
一型度 空度度法 NIEA W447-20C マーマー マーマー		2	◎pH 值	電極法	NIEA W424.52A	_	√	√
5		3	◎導電度	導電度計法	NIEA W203.51B	ı	√	√
		4		導電度法	NIEA W447.20C	=	V	√
		5		-	NIEA W455.52C	=	V	√
				= -		=	V	_
一型		-				_	_	V
9		-				_	V	
10		_				25 0 ^{#(4)} mg/L	· ·	
11 ○大屬释薩解 遠謀宗		_		103-103 C48/%	NILA W210.30A			
12 四生化需真量 水中生化需真量檢測方法				滤脏注	NIE 4 E202 55B			
13				· ·				
14		12	◎土儿而判里	水 1 主 1 而 利 重 傚	NIEA W510.55B	2.0 mg/L	,	
15 ②米色豊		13	◎油脂礦物性油脂 ⁽⁵⁾	萃取重量法			√	√
16 ②米硫酸酸 滴皮法		14	◎※氯鹽	硝酸銀滴定法	NIEA W407.51C		_	
17		15	◎※氟鹽	氟選擇性電極法	NIEA W413.52A		_	
18 砂酸鹽 鉛砂酸鹽比色法 NIEA W450.50B 0.014 mg/L		16				1.4 mg/L		
19		17			NIEA E508.00B		√	
19		18	矽酸鹽					
21		19 ©	◎正磷酸鹽					
22		20		编還原法	NIEA W452.52C			
23		21	◎※亞硝酸鹽氮				√	√
23		22	◎※氨氮		NIEA W448.51B		V	
24		23	◎※酚類	分光光度計法	NIEA W521.52A	0.0016 mg/L	√	√
25 ※總硬度 EDTA 滴定法 NIEA W208.51A 0.03 mg/L -	河	24		甲烯藍比色法	NIEA W525.52A		√	=
26	口	25		EDTA 滴定法	NIEA W208.51A	0.03 mg/L	_	V
27				連續流動式氫化物原子吸收光譜			√	
28 28 28 29 29 29 20 20 20 20 20	-	27	@.V. £		NIE A W220 52 A	0.0002 mg/I	3/	N
29								
下水水	地				NIEA W505.51A)		_
※ 水水		29			NIEA W309.22A	0.0002 mg/L	v	
鋼、編、鉛、鉾、線、鎌、絡、鋼、 鋼 (比對用) 「	水		©※銅、©※鎬、 ©※鉛、©※鋅、 ©※鎳、©※錳、 ©※銦、©※鉬、※		NIEA W311.53C	 鎬 0.0001 mg/L 鉛 0.0002 mg/L 鋅 0.0002 mg/L 鎳 0.0002 mg/L 鐵 0.0002 mg/L 	V	٧
30 總有機碳 ^{∆(8)} 過氧焦硫酸鹽加熱氧化/紅外線 測定法 NIEA W532.52C 編 0.002 mg/L			鎮、鐵、鉻、銦、 鉬	感應耦合電漿原子發射光譜法	NIEA M104.02C* ⁽⁷⁾	編 0.001 mg/L 鉛 0.003 mg/L 鋅 0.004 mg/L 鋅 0.001 mg/L 錳 0.003 mg/L 銦 0.002 mg/L 鉬 0.001 mg/L 鍓 0.001 mg/L 鐵 0.012 mg/L	V	٧
31 氰化物 $^{\Delta}$ 分光光度計法 NIEA W410.53A $0.091 \text{ mg/L}^{\theta}$		30	總有機碳 ^{Δ(8)}		NIEA W532.52C	編 0.002 mg/L 鉛 0.017 mg/L 鋅 0.020 mg/L 鎳 0.003 mg/L 鐵 0.020 mg/L 鉻 0.002 mg/L 銦 0.005 mg/L 鉬 0.002 mg/L	√	
32 硫化物 [△] 甲烯藍/分光光度計法 NIEA W433.52A 0.00048 mg/L √ —		31		分光光度計法	NIEA W410.53A	$0.091~\text{mg/L}^{\theta}$	√	V
		32	硫化物△	甲烯藍/分光光度計法	NIEA W433.52A	0.00048 mg/L	V	_

表 1.5.6-4 本計畫各檢測項目方法及依據(續 1)

様品 基質	項次	檢驗項目	檢驗方法	方法依據	方法偵測極限	檢測地面水	檢測地下水
	33	※1,1-二氯乙烷△	吹氣捕捉/氣相層析質譜儀法	NIEA W785.57B	0.000070 mg/L	_	1
		※順-1,2-二氯乙烯△			0.00012 mg/L	_	√
		※反-1,2-二氯乙烯△			0.00011 mg/L	_	√
		※四氯乙烯△			0.00013 mg/L	_	√
		※三氯乙烯△			0.00010 mg/L	_	√
		※氯乙烯△			0.000078 mg/L	_	√
		※甲苯△			0.00022 mg/L	_	√
		※苯 Δ			0.00011 mg/L	_	√
		※二甲苯△			0.00016 mg/L	_	√
		※乙苯△			0.00011 mg/L	_	√
		※四氯化碳△			0.00012 mg/L	_	√
河口		※氯苯 ^Δ			0.00010 mg/L	_	√
/		※三氯甲烷(氯仿)△			0.00011 mg/L	_	√
海		※氯甲烷△			0.000080 mg/L	_	√
域		※1,4-二氯苯△			0.00011 mg/L	_	√
/ 地		※1,1-二氯乙烯△			0.00011 mg/L	_	√
下		※1,2-二氯乙烷△			0.00011 mg/L	_	√
水		※1,1,2-三氯乙烷△			0.00013 mg/L	_	√
水		※ 荼 ^Δ			0.00020 mg/L	_	√
質		※二氯甲烷△			0.00015 mg/L	_	√
		※1,1,1-三氯乙烷△			0.00012 mg/L	_	V
		※1,2-二氯苯△			0.00014 mg/L	_	√
		※甲基第三丁基醚△			0.00010 mg/L	_	V
	34	※3,3'-二氯聯苯胺△	氣相層析質譜儀法	NIEA W801.55B	0.00290 mg/L	_	√
		※2,4,5-三氯酚△			0.00039 mg/L	_	√
		※2,4,6-三氯酚△			0.00038 mg/L	_	V
		※五氯酚△			0.00042 mg/L	_	V
	35	※總石油碳氫化合物(C6~C9)△	氣相層析儀/火焰離子化偵測器 法	NIEA W901.50B	0.0035 mg/L	_	V
	36	※總石油碳氫化合物 (C10~C40) ^Δ			0.013 mg/L	_	V
		☆ ⁽¹⁾ 銅、☆鍋、	酸消化法	NIEA M353.02C/ NIEA M111.01C	銅 2.45 mg/kg		
		☆鉛、☆鋅、		NIEA MITT.UIC	鎬 0.49 mg/kg		
底	37	☆鉻、☆鎳			鉛 11.1 mg/kg 鋅 5.98 mg/kg	$\sqrt{}$	_
泥					鉻 6.95 mg/kg		
,,3					鎳 5.01 mg/kg		
	38	☆砷	砷化氫原子吸收光譜法	NIEA S310.64B	0.162 mg/kg	V	_
	39	☆汞	冷蒸氣原子吸收光譜法	NIEA M317.04B	0.026 mg/kg	√	=

- 註: (1).標示◎表水質水量類、※表地下水類、☆表底泥類,為經環境保護署審查合格之許可項目及方法。
 - (2).代表該檢測方法係環境部公告的方法。
 - (3). "-"表不必分析。
 - (4). "#"表定量極限。
 - (5).油脂分析值≥2.0mg/L 時,加測礦物性油脂。
 - (6)."◇"表檢量線第一點濃度。
 - (7)."*"為參考環境部公告之檢測方法。
 - (8).標示" Δ "表該檢項委託具環境部認證之檢測單位(中環科技事業股份有限公司,環署環檢字第 <math>020 號)
 - (9).總有機碳檢項標示" Θ "表海陸域方法偵測極限," Θ "表地下水方法偵測極限。
 - (10).表中各檢項方法偵測極限值原則上每年更新一次。
 - (11).若因不可抗拒力(如天災、儀器故障)而未能執行檢測分析,本室將通知計畫負責人,並於樣品有效期限內轉委託具環境部 認證之檢測單位或學術單位執行檢測,或以其他適宜方式處理。

五、各檢項品質目標

本計畫各檢項之品質目標如表 1.5.6-5 所示。

表 1.5.6-5 本計畫各檢測項目品質目標

樣							回收	分
品	項次	檢驗項目	檢驗方法	方法依據	方法偵測極限	精密性 (重複分析)		添加標準品
Я	1	◎(1)水溫	水温檢測方法	NIEA ⁽²⁾ W217.51A	_(3)	≤3%	_	_
-		◎pH 值	電極法	NIEA W217.31A NIEA W424.53A		<±0.1	_	_
-		◎ 導電度	単 徑 宏 導電度計法	NIEA W203.51B	_	<3%		_
-	4	鹽度	等电及可 公 導電度法	NIEA W447.20C	_	<370 ≤1%		_
-				NIEA W447.20C NIEA W455.52C				
-	6	○浴料里 透明度	電極法 水體透明度測定方法	NIEA E220.51C	_	≤10%	_	_
-	7			NIEA W103.55B	_			
		氧化還原電位	監測井地下水採樣方法		_	≤±20mV	85~115%	_
_	9	濁度 ※(1) (4) 空 紹 日 時 以	濁度計法	NIEA W219.52C	25.0 ^{#(4)} mg/L	≤25%	85~115%	_
-		※"總溶解固體物	103~105℃乾燥	NIEA W210.58A		≤20%	_	_
	10	◎懸浮固體			2.5# mg/L	≤10% ⁽⁵⁾		
-	11	◎大腸桿菌群	濾膜法	NIEA E202.55B	10# CFU/100mL	≤0.34 ⁽⁶⁾	_	_
		◎生化需氧量	水中生化需氧量檢測方法	NIEA W510.55B	2.0# mg/L	≤15%	167.5~228.	_
			7 7 2 7 3 117 7 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_		5 mg/L ⁽⁷⁾	
河	13	◎油脂	液相萃取重量法	NIEA W506.22B	0.5# mg/L	_	78~114%	_
口		(含礦物性油脂) ⁽⁸⁾					(64~132%)	
		※氯鹽	硝酸銀滴定法	NIEA W407.51C	0.7 mg/L	≤15%		80~120%
		※氟鹽(以 F⁻計)	氟選擇性電極法	NIEA W413.52A	0.05 ⁽⁹⁾ mg/L	≤15%	80~120%	80~120%
,	16	※硫酸鹽	濁度法	NIEA W430.51C	1.4 mg/L	≤15%	80~120%	80~120%
地	17	葉綠素 a	丙酮萃取法/分光光度計分析 法	NIEA E507.04B	_	_	_	_
下	18	矽酸鹽	鉬矽酸鹽比色法	NIEA W450.50B	0.014 mg/L	≤15%	80~120%	75~125%
水	19	◎正磷酸鹽	分光光度計/維生素丙法	NIEA W427.53B	0.005 mg/L	≤15%	90~110%	85~115%
水	20	◎※硝酸鹽氮	鎘還原法	NIEA W452.52C	0.03 mg/L	≤15%	85~115%	85~115%
質	21	◎※亞硝酸鹽氮			0.0006 mg/L	≤15%	90~110%	85~115%
_		◎※氨氮	靛酚比色法	NIEA W448.51B	0.02 mg/L	≤15%	85~115%	85~115%
	23	◎酚類	分光光度計法	NIEA W521.52A	0.0016 mg/L	≤15%	80~120%	75~125%
		※總酚						
	24	◎陰離子界面活性	甲烯藍比色法	NIEA W525.52A	0.03 mg/L	≤15%	80~120%	75~125%
		劑						
	25	※總硬度	EDTA 滴定法	NIEA W208.51A	1.3 mg/L	≤15%	85~115%	80~120%
	26	◎※砷	連續流動式氫化物原子吸	NIEA W434.54B	0.0002 mg/L	≤20%	80~120%	75~125%
			收光譜法					
	27	◎※汞	冷蒸氣原子吸收光譜法	NIEA W330.52A	0.0001 mg/L	≤20%	80~120%	75~125%
	28	總鉻	石墨爐式原子吸收光譜法	NIEA W303.51A	0.0002 mg/L	≤20%	80~120%	75~125%
	29	海水中銅、鍋、鉛、	鉗合離子交換樹脂濃縮/感	NIEA W308.22B/	銅 0.0002 mg/L	≤20%	80~120%	80~120%
		鋅、鎳、鐵、鈷	應耦合電漿原子發射光譜	NIEA W311.54C	鎘 0.0001 mg/L			
			法		鉛 0.0002 mg/L			
					鋅 0.0002 mg/L			
					鎳 0.0002 mg/L			
					鐵 0.0002 mg/L			
					鈷 0.0001 mg/L			

表 1.5.6-5 本計畫各檢測項目品質目標(續 1)

114		1.5.0	, , =	一级内气口叫			1	
樣品	項次	檢驗項目	檢驗方法	方法依據	方法偵測極限	精密性		收率
基質						(重複分析)	查核樣品	添加標準品
	29	◎※銅、◎※鎘、	感應耦合電漿原子	NIEA W311.54C	銅 0.001 mg/L	≤20%	80~120%	80~120%
		◎※鉛、◎※鋅、	發射光譜法		鎘 0.001 mg/L			
		◎※鎳、◎※錳、			鉛 0.003 mg/L			
		◎※銦、◎※鉬、			鋅 0.004 mg/L			
		※鐵			鎳 0.001 mg/L			
					錳 0.003 mg/L			
					銦 0.002 mg/L			
					鉬 0.001 mg/L			
					鐵 0.012 mg/L			
		銅、鍋、鉛、鋅、	感應耦合電漿原子	NIEA	銅 0.002 mg/L	≤20%	80~120%	75~125%
		鎳、鐵、鉻、銦、	發射光譜法	M104.02C*(10)	鎬 0.002 mg/L			
河		鉬			鉛 0.017 mg/L			
ロ		(比對用)			鋅 0.020 mg/L			
/					鎳 0.003 mg/L			
海					鐵 0.020 mg/L			
域 /					鉻 0.002 mg/L			
地					銦 0.005 mg/L			
下					鉬 0.002 mg/L			
水	30		過氧焦硫酸鹽加熱	NIEA W532.52C	$0.071 \text{ mg/L}^{\Theta(12)}$	≤15%	85~115%	75~125%
水水		◎※總有機碳 ^{△(11)}	氧化/紅外線測定		0.091 mg/L ^θ	21370		
介質			法					
貝	31	◎※氰化物△	分光光度計法	NIEA W410.54A	0.00048 mg/L	≤20%	80~120%	75~125%
	32	◎硫化物 ^Δ	甲烯藍/分光光度計	NIEA W433.52A	0.0036 mg/L	≤20%	80~120%	75~125%
		9 MIL 10 199	法		8	32070		
	33	※1,1-二氯乙烷△	吹氣捕捉/氣相層析	NIEA W785.57B	0.000070 mg/L	≤25%	75~125%	65~135%
		※順-1,2-二氯乙烯 [△]			0.00012 mg/L	_2370		
		※反-1,2-二氯乙烯 [△]	X 10 AVIA		0.00011 mg/L			
		※四氯乙烯 [△]			0.00011 mg/L			
					0.00013 mg/L 0.00010 mg/L			
		※三氯乙烯△						
		※氯乙烯△			0.000078 mg/L			
		※甲苯△			0.00022 mg/L			
		※苯△			0.00011 mg/L			
		※二甲苯△			0.00016 mg/L			
		※乙苯△			0.00011 mg/L			
		※四氯化碳△			0.00012 mg/L			
		※氯苯△			0.00010 mg/L			
		※三氯甲烷(氯仿)△			0.00011 mg/L			
		※氯甲烷△			0.000080 mg/L			
		※1,4-二氯苯 [△]			0.00011 mg/L			
		※1,1-二氯乙烯△			0.00011 mg/L			
		※1,2-二氯乙烷 [△]			0.00011 mg/L			
		※1,1,2-三氯乙烷 [△]			0.00011 mg/L			
					0.00013 mg/L 0.00020 mg/L			
		※荼△※二氯甲烷△			0.00020 mg/L 0.00015 mg/L			
		※1,1,1-三氯乙烷△			0.00012 mg/L			
		※1,2-二氯苯 [△]			0.00014 mg/L			
	2.4	※甲基第三丁基醚△	E1.01.20.00.0	NIEL WOOL STE	0.00010 mg/L		20 1200/	20 1200/
	34	※3,3'-二氯聯苯胺△	氣相層析質譜儀法	NIEA W801.54B	0.00290 mg/L	≤40%	30~120%	20~120%
		※2,4,5-三氯酚△			0.00039 mg/L		40~120%	30~130%
		※2,4,6-三氯酚△			0.00038 mg/L			
		※五氯酚△			0.00042 mg/L			
	1							

表 1.5.6-5 本計畫各檢測項目品質目標(續 2)

樣品	項	从以云口	檢驗方法 方法依據	十八八 4	十	精密性	回收率	
基質	次	檢驗項目		方法偵測極限	(重複分析)	查核樣品	添加標準品	
	35	※總石油碳氫化合物(C6~C9) [△]	氣相層析儀/火焰	NIEA W901.50B	0.0035 mg/L	≤25%	75~125%	65~130%
	36	※總石油碳氫化合物(C10~C40)△	離子化偵測器法		0.013 mg/L	≤25%	60~125%	55~130%
	37	☆ ⁽¹⁾ 銅、☆鎘、	酸消化法	NIEAM353.02C/	銅 2.45 mg/kg	≤20%	80~120%	80~120%
		☆鉛、☆鋅、		NIEA M111.01C	鏋 0.49 mg/kg			
		☆鉻、☆鎳、			鉛 11.1 mg/kg			
底					鋅 5.98 mg/kg			
泥					鉻 6.95 mg/kg			
///					鎳 5.01 mg/kg			
	38	☆砷	砷化氫原子吸收	NIEA S310.64B	0.162 mg/kg	≤20%	70~130%	75~125%
	30	X44	光譜法	THE TOSTOLOTE	0.102 mg/ng	≥20%	70 15070	75 12570
	39		冷蒸氣原子吸收	NIEA M317.04B	0.026 mg/kg	≤20%	80~120%	75~125%
			光譜法					

- 註: (1).標示◎表水質水量類、※表地下水類、☆表底泥類,為經環境保護署審查合格之許可項目及方法。
 - (2).代表該檢測方法係環境部公告的方法。
 - (3)."-"表不必分析。
 - (4)."#"表定量極限。
 - (5).懸浮固體樣品濃度<25mg/L 時,管制值 \leq 20%。當樣品濃度 \geq 25mg/L 時,管制值 \leq 10%。
 - (6).大腸桿菌群檢項對數差異值管制值為≤0.34。
 - (7).BOD 的品質目標以濃度表示為 167.5~228.5mg/L。
 - (8).油脂分析值≥2.0mg/L 時,加測礦物性油脂。
 - (9)."◇"表檢量線第一點濃度。
 - (10)."*"為參考環境部公告之檢測方法。
 - (11).標示"Δ"表該檢項委託具環境部認證之檢測單位(中環科技事業股份有限公司,環署環檢字第 020 號)
 - (12).總有機碳檢項標示"Θ"表海陸域方法偵測極限,"Θ"表地下水方法偵測極限。
 - (13).表中各檢項方法偵測極限值原則上每年更新一次。
 - (14).若因不可抗拒力(如天災、儀器故障)而未能執行檢測分析,本室將通知計畫負責人,並於樣品有效期限內轉委託 具環境部認證之檢測單位或學術單位執行檢測,或以其他適宜方式處理。轉委託後之分析品質亦須符合上表中品 質目標的規定。

六.數據處理原則

(一)本檢驗室採用的計算方式,舉例說明如下:

- 1~9 九個數字無論出現何處,均為有效數字。如 2.13 與 21.3 均為三位有效數字。
- 2. "0"出現在兩個有效數字間為有效數字,如 20.3 為三位有效數字。若出現在小數點之後,而前面有 1~9 的數目存在時,視為有效數字,如 1.200 為四位有效數字。
- 3. "0"出現在小數點前,而其前面沒有 1~9 的數目存在時,不視 為有效數字,如 0.023 為兩位有效數字。
- 4. "0"出現在整數末端,不視為有效數字,如 2100 為兩位有效數字。但使用科學記號時,在"×10"(或 E+)次方前的數字均為有效數字。如 2.30×10²(或 2.30E+02),有效數字為三位。
- 5. 有效數字在數字的運算中採四捨六入五成雙法,如 2.345 進位為 2.34,而 2.355 進位為 2.36。若 5 的後面仍有大於 0 之數字則無條件進位。
- 6. 各檢項的報告值出具方式均遵照環境部 88 年 9 月公告及 99 年 2 月修訂之檢測報告位數表示規定執行。

(二)報告數據表示方式

若數據低於該檢項 MDL,則以"ND"表示。數據介於 MDL 至檢量線第一點濃度之間範圍以"<檢量線第一點濃度"後以括號列出檢測值,如"<0.03 (0.02)"。若該檢項之檢量線第一點濃度低於環檢所規定的最小表示位數,則只要檢測值高於 MDL,均以"<最小表示位數"後以括號列出檢測值,如"<0.01 (0.0072)"。若委託單位對某些檢項的數據出具方式或顯示位數有研究用需求,本室當在不違反數據正確性與環檢所規定的前提下,在"樣品檢測報告書"中提供更多訊息。如部份檢項出具"ND"後以括號加註實際測值。

1.5.7 海域生態

(一)浮游動物部份

依環境部環檢所於民國 93 年公告之海洋浮游動物檢測方法 (NIEA E701.20C)施行;以北太平洋標準網在近岸測站進行表層拖網一次,離岸測站則分別進行水平及垂直拖網各一次。網口裝置流量計以估算流經網口之實際水量。採得之樣品,以 5%中性福馬林溶液固定保存攜回實驗室中,以分樣器(Plankton divider)取得子樣品,進行生物量(Biomass)、豐度(Abundance),以及各大類出現百分率(Occurence %)之測定。

(二)浮游植物部份

參照環境部環檢所於民國 92 年公告之水中浮游植物採樣方法-採水法(NIEA E505.50C)施行;在每一測站以採水器採取表層 20 公升的海水,經 55 μm 的濾網過濾,濃縮成 70~100 毫升,並以 Lugol's solution 數滴固定後,置於褐色塑膠瓶中,攜回實驗室進行鑑種,計數單位水體積中之細胞數以及各種藻類之數量百分比等分析工作。

(三)亞潮帶底棲動物

參照環境部國家環境研究院於民國 93 年公告之軟底質海域底棲生物採樣通則(NIEA E103.20C)施行;以矩形底棲生物採樣器(Naturalist's anchor dredge,網寬 45 公分、網高 18 公分、網目 0.5 公分)進行平行海岸線的底棲生物採集。採得樣品現場先以 7%氯化鎂麻醉樣品後,以冰塊冷藏於冰箱中。攜回實驗室後,用 70%酒精溶液固定保存,進行鑑種、種類組成分析及豐度估計。多樣性分析方法:生物多樣性指標分析包括種豐富度指數、均勻度指數以及歧異度指數。計算公式如下

豐富度指數:物種豐富度指數用以表達樣品中物種的多寡,物種豐富度指數越高,物種越豐富。

$$R = \frac{S-1}{\log_e N}$$
....(Species Richness Index)

R:種豐富度指數

S: 群聚中所出現的物種數量

N: 所有物種的總個體數

2.均勻度指數:均勻度為群聚中個體在不同種間分布的均勻程度, 均勻度指數越高,個體在種間分布越均勻。

$$J' = \frac{H'}{\log_e S}$$
.....(Pielou's Evenness Index)

J': 均匀度指數

S: 群聚中所出現的物種數量

H': 歧異度指數

3.歧異度指數:在穩定的環境中,歧異度指數較高,即物種多樣性 高、各物種的數量均勻分布,若族群組成單一或出現明顯優勢種 時,歧異度指數則較低。

$$H' = -\sum_{i=1}^{s} \left[\left(\frac{n_i}{N} \right) \times \log_e \left(\frac{n_i}{N} \right) \right] (Shannon - Wiener Index)$$

H': 歧異度指數

S: 群聚中所出現的物種數量

ni:第i種物種的個體數 N:所有物種的總個體數

生物群聚時空差異分析:以 PRIMER 統計軟體計算出各測站生物間 Bray-Curtis 相似性指數的三角矩陣,再以多元尺度 (Multi-Dimensional Scaling, MDS)分析製圖,並作 ANOVA 分析季節及測站間生物群聚差異。其中相似度指數如下所述:其中相似度指數如下所述:

$$S_{jk} = 100 \left\{ 1 - \frac{\sum_{i=1}^{p} \left| y_{ij} - y_{ik} \right|}{\sum_{i=1}^{p} \left(y_{ij} + y_{ik} \right)} \right\} \dots \left(Bray - Curtis \quad Similarity \quad Index \right)$$

Sik:j樣品與 k 樣品間相似度指數

yij: 在j樣品中第i種物種之豐度

yik:在 k 樣品中第 i 種物種之豐度

(四)潮間帶底棲動物調查

1.潮間帶小型底棲生物部份:

依環境部國家環境研究院於民國 93 年公告之軟底質海域底棲 生物 採 樣 通 則 (NIEA E103.20C) 施 行 ; 以 每 次 採 集 33cm×33cm×15cm 的泥樣進行篩選,採得樣品現場先以 7%氯化鎂麻醉樣品後,再用 70%酒精溶液固定保存。攜回實驗室後,進

行鑑種、種類組成分析及豐度估計。

2.潮間帶底質粒徑及有機質分析

潮間帶四個測站的底質樣品,經網目為 1 mm 之篩網後,以 Coulter LS-100 型雷射粒徑分析儀分析不溶性顆粒之顆粒度,計算出各等級粒徑所佔百分比,所得粒徑分析結果對照 Wentworth scale(Wentworth, 1922),將各粒徑等級分別為粗砂(Coarse sand)($1/2 \text{ mm} \sim 1 \text{ mm}$)、中細砂(Medium sand)($1/4 \text{ mm} \sim 1/2 \text{ mm}$)、細砂(Fine sand)($1/8 \text{ mm} \sim 1/4 \text{ mm}$)、極細砂(Very fine sand)($1/16 \text{ mm} \sim 1/8 \text{ mm}$)、粉沙(silt)($1/256 \text{ mm} \sim 1/16 \text{ mm}$)、黏土(Clay)(<1/256 mm)。再將底質樣品,以灰化法(Loss-in-ignition)進行底質中有機質含量的分析(Kuwabara, 1987),其分析步驟如下:

- (1)鍋置於80℃的烘箱中隔夜
- (2)將溫度升至 100℃烘 2 小時後冷卻,取冷卻後坩鍋重量(W₀)
- (3)取 4 g 經風乾後之底泥樣品,置入已知重量的坩鍋中,並秤重 (W₁)
- (4)置於 105℃的烘箱中加熱 24 小時後,取出加熱後之樣品置入乾燥器中待冷卻至室溫後取出秤重(W₂)
- (5)將步驟 d 烘乾之樣品,置於灰化爐中以 500℃加熱 2 小時,取 出加熱後的樣品,置於乾燥器中,待冷卻至室溫後取出秤重(W₃)
- (6)利用下列公式計算有機質含量:

有機質含量(%)=
$$\frac{W_2-W_3}{W_1-W_0}$$
 ×100%

3.多樣性分析方法部分:

生物多樣性指標分析:包括豐富度指數、均勻度指數以及歧異度指數。計算公式如下:

(1)豐富度指數:物種豐富度指數用以表達樣品中物種的多寡,物種豐富度指數越高,物種越豐富。

$$R = \frac{S-1}{\log_{1} N}....(Richness Index)$$

R:豐富度指數

S: 群聚中所出現的物種數量

N:所有物種的總個體數

(2)均勻度指數:均勻度為群聚中個體在不同種間分布的均勻程度,均勻度 指數越高,個體在種間分布越均勻。

$$J' = \frac{H'}{\log_e S}$$
.....(Pielou's Evenness Index)

J:均匀度指數

S: 群聚中所出現的物種數量

H': 歧異度指數

(3)歧異度指數:在穩定的環境中,歧異度指數較高,卽物種多樣性高、各物種的數量均勻分布,若族群組成單一或出現明顯優勢種時,歧異度指數則較低。

$$H' = -\sum_{i=1}^{s} \left[\left(\frac{n_i}{N} \right) \times \log_e \left(\frac{n_i}{N} \right) \right] (Shannon - Wiener Index)$$

H': 歧異度指數

S: 群聚中所出現的物種數量

n_i: 第 i 種物種的個體數 N: 所有物種的總個體數

生物群聚時空差異分析:以 PRIMER 統計軟體計算出各測站生物間 Bray-Curtis 相似性指數的三角矩陣,分析測站間生物群聚差異。其中相似度指數如下所述:其中相似度指數如下所述:

$$S_{jk} = 100 \left\{ 1 - \frac{\sum_{i=1}^{p} \left| y_{ij} - y_{ik} \right|}{\sum_{i=1}^{p} \left(y_{ij} + y_{ik} \right)} \right\} \dots \left(Bray - Curtis \quad Similarity \quad Index \right)$$

Sjk:j樣品與 k 樣品間相似度指數 yij:在j樣品中第 i 種物種之豐度 vik:在 k 樣品中第 i 種物種之豐度

(五)刺網漁獲生物

本研究依據環境部公告之海域魚類採樣通則實施(中華民國93年2月19日環署檢字第0930012345號公告,自中華民國93年6月15日起實施,NIEA E102.20C),租用雲林海域箔子寮漁港刺網漁船,依當地原作業方式進行漁獲生物調查。將漁船所漁獲之水產生物進行分類鑑定、稱重及計量,並詢問當時各漁獲生物售價,以推估拖網漁船每網次之漁獲努力量(Catch per unit of

effort; CPUE)及漁獲收益(Income per unit of effort; IPUE),以瞭解雲林海域之漁獲生物組成及資源量的變化。

(六)刺網漁獲生物體中重金屬濃度調查

1.標本的前處理

由民國 112 年 2 月 1 日由刺網漁業生物調查中,選取其中的優勢水產生物進行分析,魚類經測量體長、體重後,將同種魚等量的肌肉及肝臟分別混合,製成待測樣品;蟹類經測量頭胸甲長後,取其體內、螯肉及肝胰臟分別混合,製成待測樣品;文蒸餾水清洗,再以拭手紙吸乾水份後,先稱取濕重,再予以混合均質,製成待測樣品;螺類亦經測量殼長後,分腹足肌肉與內臟團分別混合,製成待測樣品;牡蠣則經剝殼處理,用二次蒸餾水清洗,再以拭手紙吸乾水份後,先稱取濕重,再予以混合均質並經冷凍乾燥 72 小時,得知乾濕重比後,成為待測樣品。

2.標本消化及分析

首先稱取 0.2~0.3 公克乾重(牡蠣)或 3~5g 濕重的待測樣品於50ml 的三角錐形瓶或是 25ml 的鐵氟龍瓶中,再依樣品重量加入適量的濃硝酸(以 1 公克濕重樣品加 5ml HNO3 的比例)進行濕式消化,待樣品完全消化並加熱至 120℃至少 2 小時,經趕酸,並以Whatman No.541 濾紙過濾,定容至 25ml 成為待測樣品。此外,在實驗過程中,並同步加入國際標準檢驗樣品,如加拿大國科會的鯊魚肌肉(DORM-2)及螯蝦肝胰臟(TORT-2),做為實驗分析品保及品管的控制。

消化後的樣品,視樣品中的重金屬濃度,使用火焰式或石墨爐式原子吸收光譜儀(FAAS/GFAAS, Flame/Graphite Atomic Absorption Spectromerty Hitachi, Zeeman -3000),進行 As(砷)、Cd(鍋)、Cu(銅)和 Zn(鋅)的測定。

(七)仔稚魚調查

租用當地漁船,以仔稚魚網(如圖 1.5.7-1)每季於各測站沿海岸線平行方向拖撈一網次。網口加裝流量計,以精確估計實際拖撈過濾的水體積。作業時維持船速 2~2.5 海浬/小時,每次作業 20 分鐘。採得之樣品,以 10%福馬林固定。攜回實驗室後,進行種類鑑定至可判定最低分類階層及計算其豐度(abundance),並分析各測站之魚類組成、歧異度指數(Shannon-Wiener Diversity Index)及相似度指數(Bray-Curtis Similarity Index)。

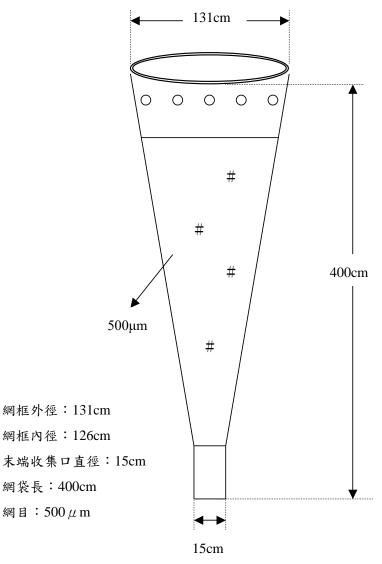


圖 1.5.7-1 仔稚魚網示意圖

1.5.8 海域地形

一、測量現場作業與分析之品保/品管

(一)工作計畫擬定及進度控制

在現場測量工作進行前,先行擬定工作計畫、工作進度表、 人員編組、儀器維修、工作日誌製作等,以確實人員分組分工、 儀器定期校正維護,並掌握測量工作進度之執行。

(二)控制測量之檢核

由於本區屬海岸地盤沉陷嚴重區域,海域水深測量及航測佈標作業,均先行對沿岸之陸上控制點及佈標,以 GPS 定位系統及內陸水準導線完成測量規範要求之檢測工作,確保基準控制點之精度要求。

(三)作業檢測

海域水深測量及航測作業中,進行之作業檢測工作如下:

海域水深測量	航測
潮汐水位改正檢核	航線檢測
音速校正及音鼓校正之檢核	空中三角平差計算檢核
船速控制及測線檢核	立體測圖製作檢核
波浪仰俯消波檢核	

(四)分析作業檢核

為避免現場作業及內業作業間資料傳輸與分析之誤判,現場作業人員施作期間,保留控制測量、潮位驗潮記錄、音速校正等觀測記錄,同時填寫必要表格及異常說明,以供分析作業之查核分析。各階段水深測量及校正記錄,均以電腦自動化存取或輸入建檔,以作進一步校正檢核工作,對錯誤疑問及遺漏部份則由現場補測。

二、儀器維修校正及頻率

在工作計畫執行前,所有現場作業之儀器均送至合格廠商作維修保養及偏差校正工作,以確保儀器作業中之精度及穩定性,作業使用期間隨時監控數據是否有所異常反應,並定期委由專人進行維護及檢查,本地形測量監測之儀器維修校正及頻率如表 1.5.8-1 所示。

表 1.5.8-1 地形測量工作之儀器維修校正級頻率表

儀器名稱	校正項目	頻率
1. 測深儀校正(含音	深度數化值與測深帶	每日出海作業前於港口進
鼓)	深度刻劃比對校正	行
2.DGPS 衛星定位儀 校正	定點座標比對校正	每月一次陸上控制點校正
3.精密水準儀	水平校正	每週一次自行校正
4.GPS 衛星定位儀	維修保養	每季一次廠商校正
5. 航測立體製圖儀	維修保養及校正	每季一次廠商校正
6.聲速儀	頻率校正	使用前送廠商校正

三、數據處理原則

測量數據利用電腦依施測日期加以儲存後,海域水深測量數據先行進行潮汐水位、音速校正量之修正後,並一併與航測資料完成校正與比對工作後,繪製等深線圖及測量斷面資料整理後,利用數值格網程式計算分析,並與歷年資料進行侵淤比對分析。

1.5.9 海象

一、儀器之檢較

ADCP 用於量測波浪(波高、週期與波向)及海潮流(流速與流向), 儀器備有溫度計、壓力計、音波計、羅盤與傾角計等感應器,其中溫度計用於音波之較正以求得反射之流速訊號,壓力計用途為量測水位、波高與週期,羅盤與傾角計則是配合音波訊號量測流向與波向。 因此於儀器入海進行監測前須完成以下檢較步驟,確保儀器正常並保證資料之正確性。

- (1)每次現場監測前及儀器回收後將溫度計分置於空氣與水體 中與一般溫度計進行簡易比對,並每約兩個月以恆溫水槽 與工研院量測中心校正後之標準溫度計校正。
- (2)壓力計為每次現場監測前及儀器回收後置於空氣中歸零,再將其置於量桶之水體內由量桶刻度進行檢測,並定期以淨壓產生器校正。
- (3)音波計則是於監測前及儀器回收後於空氣中與水中觀察音波之回波強度以判斷其運作狀態,並定期於造流水槽或斷面水槽以台車拖曳檢測。
- (4)羅盤與傾角計則是將儀器連接電腦後,執行原廠較正軟體 旋轉儀器,利用感應磁場與地磁變化進行校正動作。

二、波浪監測資料品管流程與作法

監測資料品管(data quality check)包含原始時序資料品管與統計參數品管,品管方式由人工檢核與程式自動化檢核兩個步驟組成。 其概略流程如下:

原始時序資料可能包含離群之雜訊或有資料關漏之情形,因此處理步驟首先由程式自動化檢核,將原始時序資料進行雜訊去除與資料補遺,再由統計值根據儀器量測範圍限制、物理限制、時間連續與其他物理量之相關性進行資料判定。最終輔以人工檢視方式進行判定該筆資料是否可用。詳細監測資料品管流程與作法如圖 1.5.9-1,說明如下:

首先將波浪之波壓原始時序列濾除非波浪之長週期潮汐成分, 其次根據物理量為連續之原則將超過設定標準偏差之測值當作雜訊 去除,將上述不合理或缺漏之資料依據理論(如 AR model)進行補遺, 而後計算統計值,再由時序統計值根據儀器量測範圍限制、物理條 件、時間連續與其他物理量之相關性進行資料合理性判定,例如波 高量測範圍 0~10 m 但計算得 15 m、碎波水深小於波高、波高與前 後時期差異甚大、風速極大(小)但波高極小(大)等皆為不合理測值,應予去除。由於上述程式判定仍會有不合理或錯誤之情形產生或將極端條件之資料誤刪(如颱風低氣壓等極端條件),因此最終仍需由專業研究人員以人工檢視原始資料方式進行資料判定。

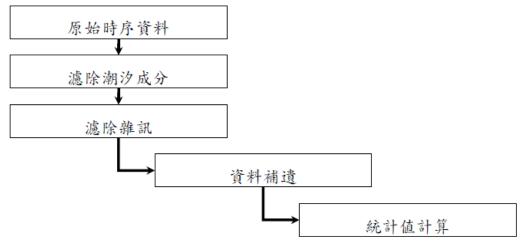


圖 1.5.9-1 波浪監測資料品管流程

三、海流監測資料品管流程與作法

由於海流資料之取樣方式與波浪高頻取樣不同,其為經由平均 取樣之資料,原始資料如同統計過後之資料,因此監測資料品管為 原始時序資料品管,品管方式同波浪由人工檢核與程式自動化檢核 兩個步驟組成。詳細監測資料品管流程與作法如**圖** 1.5.9-2,說明如 下:

首先將海流原始時序列根據物理量為連續之原則將超過設定標準偏差之測值當作雜訊去除,其次根據儀器量測範圍限制、物理條件限制進行資料合理性判定,例如流速量測範圍 0~2m/s 但測得 3 m/s、所測資料為兩次反射值、流速與前後時期差異甚大、與其他分層流速分量相關性低、回波強度小於或等於背景值等皆為不合理測值,應予去除。將上述不合理或缺漏之資料依據理論(如調合分析)進行補遺,由於上述程式判定仍會有將極端條件之資料所誤刪,因此最終仍需由專業研究人員以人工檢視原始資料方式進行資料判定。

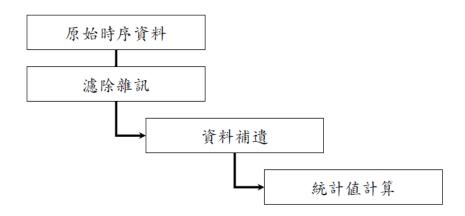


圖 1.5.9-2 海流監測資料品管流程

四、波浪監測資料分析方法

波浪調查主要在求得波浪之波高、週期及波向。波高、週期之分析方法基本上可分為兩種,一為逐波(wave-by-wave)分析法;另一為波譜(wave spectrum)分析法。經由實際分析結果發現逐波分析法會造成波浪之週期偏大,此現象於小波高時更為明顯,因此較不適用於實測資料分析(Bishop and Donelan, 1987; Kao and Chiu, 1994; Townsend and Fenton, 1996)。而頻譜分析法只要波高計架設位置盡可能接近水面,則利用線性理論分析結果可將誤差控制在5%以內,因此本文以波譜分析法計算波浪相關統計參數。方向波譜分析則利用水壓式波高計配合流速計所測得水平兩方向流速以決定方向譜之方法(即所謂 p-u-v 方法)。

五、海流監測資料分析方法

流速剖面儀資料分析基本上包含數值濾波、統計、平均、頻譜分析、調和分析等方式分析各分層海流特性,再將分析結果整理為三大類圖表,第一類為逐時變化圖;第二為統計圖表;第三為頻譜分析與調和分析結果,並由各圖表說明海流特性。上述資料分析前會根據回波強度、水壓等訊號濾除多次反射之錯誤海流資料。

第二章 本季監測結果數據分析

第二章 本季監測結果數據分析

2.1 空氣品質

本季離島產業園區空氣品質調查工作,已於 114 年 8 月 23 日至 26 日進行現場 24 小時連續監測,各測站空氣污染物逐時監測結果列於附錄四-1-表 1~表 3,氣象逐時監測結果列於附錄四-1-表 4~表 6,其採樣時間風花圖如表 2.1-1 所示,綜合結果整理如表 2.1-2,監測校正紀錄則列於附錄三。

一、一氧化碳

本季各測站一氧化碳最高 8 小時平均值如**圖 2.1-1** 所示,測值介於 0.10~0.20 ppm,均遠低於空氣品質標準一氧化碳最高 8 小時平均值 9 ppm 之限值,其中鎮安府及台西國小測值為 0.20 ppm 較高,崙豐漁港駐在所測值為 0.10 ppm 較低。

各測站一氧化碳最高小時值亦如**圖 2.1-1** 所示,測值介於 0.20~0.40 ppm 之間,均遠低於空氣品質標準一氧化碳最高小時平均值 31ppm 之限值,其中台西國小測值為 0.40 ppm 較高,鎮安府測值為 0.30 ppm 次之,崙豐漁港駐在所測值為 0.20 ppm 較低。

二、二氧化硫

本季各測站二氧化硫濃度日平均值如**圖 2.1-2** 所示,測值介於 1.0~2.0 ppb 之間,其中以崙豐漁港駐在所測值為 2.0 ppb 較高,鎮安府及台西國小測值為 1.0 ppb 較低。

各測站二氧化硫最高小時平均值亦如**圖 2.1-2** 所示,測值介於 2.0~8.0 ppb 之間,其中以鎮安府及崙豐漁港駐在所測值為 8.0 ppb 較高,台西國小測值為 2.0 ppb 較低。本季三測站測值均符合空氣品質標準二氧化硫小時平均值 65 ppb 之限值。

三、氮氧化物及二氧化氮

本季各測站氮氧化物日平均值如**圖 2.1-3** 所示,測值介 6.0~11.0 ppb 之間,其中以鎮安府測值為 11.0 ppb 較高,崙豐漁港駐在所測值為 10.0 ppb 次之,台西國小測值為 6.0 ppb 較低。

本季各測站二氧化氮最高小時平均值如圖 2.1-4 所示,測值介於 13.0~26.0 ppb 之間,其中以鎮安府測值為 26.0 ppb 較高,崙豐漁港駐在所測值為 20.0 ppb 次之,台西國小測值為 13.0 ppb 較低,本季三測站測值均符合空氣品質標準二氧化氮小時平均值 100 ppb 之限值。

四、臭氧

本季各測站臭氧濃度最高 8 小時平均值如**圖 2.1-5** 所示,測值介於 47.0~67.0 ppb 之間,其中以鎮安府測值為 67.0 ppb 較高,崙豐漁港駐在所測值為 64.0 ppb 次之,台西國小測值為 47.0 ppb 較低。本季僅台西國小測值符合空氣品質標準 60 ppb 之限值。

各測站臭氧濃度最高小時值亦如**圖 2.1-5** 所示,測值介於 53.0 ~87.0 ppb 之間,其中以鎮安府及崙豐漁港駐在所測值為 87.0 ppb 較高,台西國小測值為 53.0 ppb 較低。本季三測站測值皆符合空氣品質標準 100 ppb 之限值。

五、總碳氫化合物(THC)

本季各測站總碳氫化合物濃度日平均值及最高小時值如**圖 2.1-6** 所示,測值介於 2.14~2.57 ppm 之間,其中以鎮安府測值為 2.57 ppm 較高,崙豐漁港駐在所測值為 2.22 ppm 次之,台西國小測值為 2.14 ppm 較低。

最高小時測值介於 2.72~3.90 ppm 之間,其中以鎮安府測值為 3.90 ppm 較高,台西國小測值為 2.78 ppm 次之,崙豐漁港駐在所測值為 2.72 ppm 較低。

六、非甲烷類碳氫化合物(NMHC)

本季各測站非甲烷類碳氫化合物濃度日平均值及最高小時值如**圖 2.1-7** 所示。日平均值為 0.04 ~0.08 ppm,其中鎮安府測值為 0.08 ppm 較高,崙豐漁港駐在所測值為 0.06 ppm 次之,台西國小測值為 0.04 ppm 較低。

最高小時測值介於 $0.12 \sim 0.24$ ppm 之間,其中以崙豐漁港駐在所測值為 0.24 ppm 較高,鎮安府測值為 0.15 ppm 次之,台西國小測值為 0.12 ppm 較低。

七、懸浮微粒

(一)總懸浮微粒(TSP)

各測站總懸浮微粒 24 小時值如**圖 2.1-8** 所示,介於 32.0~67.0 $\mu g/m^3$ 之間,台西國小測值為 67.0 $\mu g/m^3$ 較高,鎮安府測值為 37.0 $\mu g/m^3$ 次之,崙豐漁港駐在所測值為 32.0 $\mu g/m^3$ 較低。

(二)粒徑小於 10 μm 之懸浮微粒(PM₁₀)

各測站 PM₁₀ 日平均值如**圖 2.1-9** 所示,介於 17.0~29.0 μg/m³ 之間,以鎮安府測值為 29.0 μg/m³ 較高,崙豐漁港駐在所測值為 $21.0\,\mu g/m^3$ 次之,台西國小測值為 $17.0\,\mu g/m^3$ 較低,本季三測站測值皆符合空氣品質標準 $75\,\mu g/m^3$ 之限值。

八、落塵量

各測站落塵量月平均值如**圖 2.1-10** 所示,介於 $3.1 \sim 8.5$ g/m²/月之間,以台西國小測值為 8.5 g/m²/月較高,鎮安府測值為 5.3 g/m²/月 次之,崙豐漁港駐在所測值為 3.1 g/m²/月較低。

九、綜合評析

上述監測成果顯示,本季除鎮安府及崙豐漁港駐在所臭氧最高8小時平均值測值超標外,其餘各測站測值均可符合空氣品質標準,且測值均在歷年變動範圍內。

表 2.1-1 採樣時間風花圖表 114.8.23 (09 時)~114.8.24 (09 時) STATION:鎮安府 YEAR: 2025 MONTH:06 N NNN NNE My V MNM ENE 鎮安府 ≥30% 10% MSM 35 MSS 355 S ⊣∨ 30% 20% 20% 10% = :>6 m/s :>4 m/s and <=6 m/s = : <=4 m/s : Calm 114.8.24 (12 時)~114.8.25 (12 時) STATION: 崙豐漁港駐在所 YEAR: 2025 MONTH:08 NNN NNE 44 V MNM 崙豐漁港駐在所 35 MSS 355 S 20% 30% = :>6 m/s :>4 m/s and <=6 m/s = : <=4 m/s : Calm

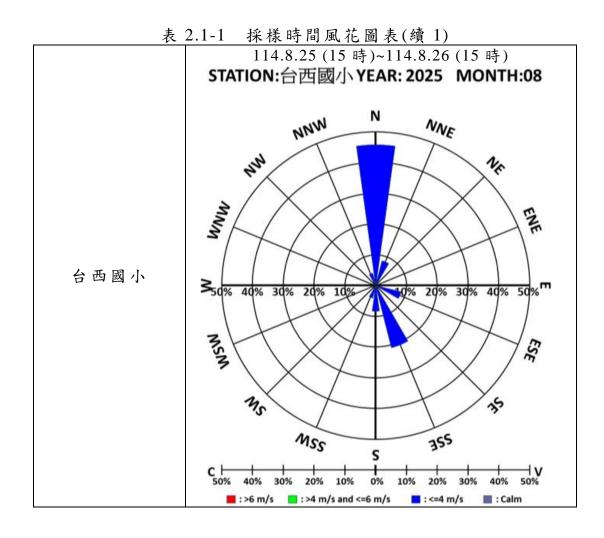


表 2.1-2 114 年第 3 季空氣品質監測綜合成果

監測時間:114.08.23~26

項目	測 值	鎮安府	崙豐漁港駐在所	台西國小	空氣品
块 日	测 但	114.08.23~24	114.08.24~25	114.08.25~26	質標準
一氧化碳	最高8小時平均值	0.20	0.10	0.20	9
(ppm)	最高小時值	0.30	0.20	0.40	31
二氧化硫	日平均值	1.0	2.0	1.0	
(ppb)	最高小時值	8.0	8.0	2.0	65
氮氧化物 (ppb)	日平均值	11.0	10.0	6.0	
二氧化氮 (ppb)	最高小時值	26.0	20.0	13.0	100
臭氧	最高8小時平均值	67.0*	64.0*	47.0	60
(ppb)	最高小時值	87.0	87.0	53.0	100
總碳氫化	日平均值	2.57	2.22	2.14	_
合物 (ppm)	最高小時值	3.90	2.72	2.78	
非甲烷碳	日平均值	0.08	0.06	0.04	_
氫化合物 (ppm)	最高小時值	0.15	0.24	0.12	_
風主	速(日平均值) (m/s)	0.8	2.4	0.5	_
	最頻風向	Е	SSE	N	
TSP (μg/m ³)	(24 小時值)	37.0	32.0	67.0	1
PM ₁₀ (μg/m ³)	(日平均值)	29.0	21.0	17.0	75
PM _{2.5} (μg/m ³)	(24 小時值)	-	9	-	30
(PN	I ₁₀ /TSP)比值	0.78	0.66	0.25	
落塵量 (g/m²/月)	(月平均值)	5.3	3.1	8.5	_

註:1.單位除懸浮微粒為 $\mu g/m^3$ 以及 SO_2 、 NO_2 、 NO_X 、 O_3 為 ppb 、落塵量為 $g/m^2/$ 月 及風速為 m/s 外,其餘項目為 ppm 。

^{2.}空氣品質標準摘自中華民國 113 年 9 月 30 日環境部空字第 1131062467 號公告。

^{3.&}quot;*"表超過空氣品質標準之限值。

^{4.}每季進行一次連續24小時監測。

^{5.}PM₁₀之標準為日平均值之標準。

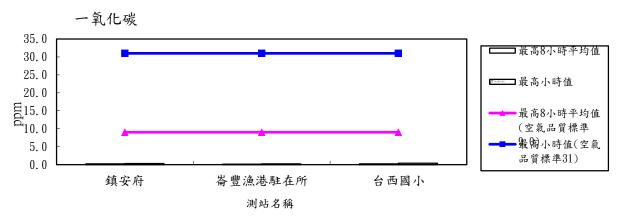


圖 2.1-1114 年度第 3 季各測站一氧化碳(CO)最高 8 小時平均值及最高小時值比較分析圖

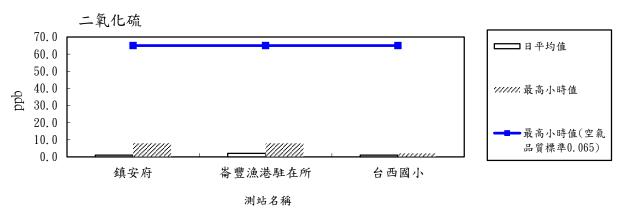


圖 2.1-2 114 年度第 3 季各測站二氧化硫(SO₂)最高小時值比較分析圖

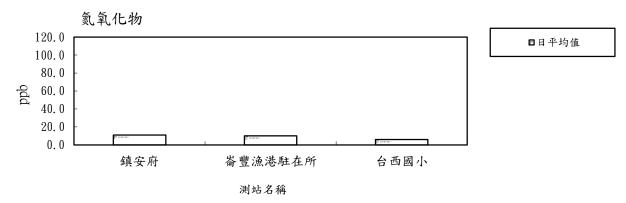


圖 2.1-3 114 年度第 3 季各測站氮氧化物(NOx)日平均值比較分析圖

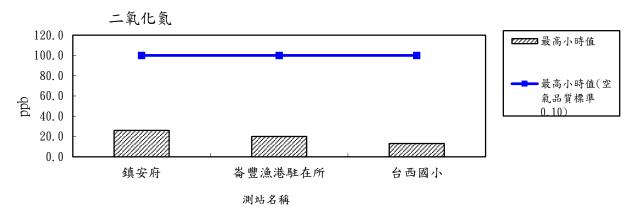


圖 2.1-4 114 年度第 3 季各測站二氧化氮(NO₂)最高小時值比較分析圖

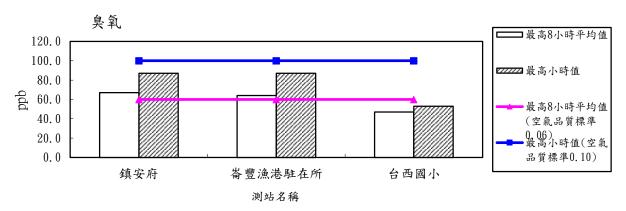


圖 2.1-5 114 年度第 3 季各測站臭氧(O₃)最高 8 小時平均值及最高小時值 比較分析圖

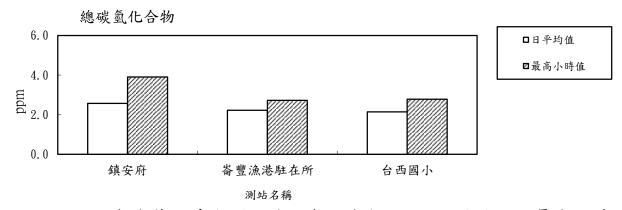


圖 2.1-6 114 年度第 3 季各測站總碳氫化合物(THC)日平均值及最高小時值比較分析圖

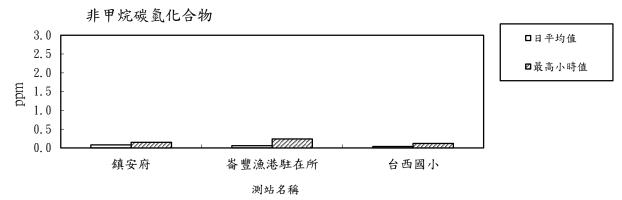


圖 2.1-7 114 年度第 3 季各測站非甲烷碳氫化合物(NMHC)日平均值及最高小時值比較分析圖

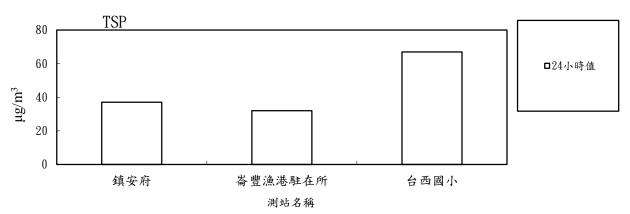


圖 2.1-8 114 年度第 3 季各測站 TSP 24 小時值比較分析圖

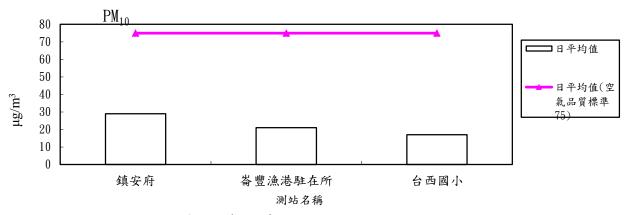


圖 2.1-9 114 年度第 3 季各測站 PM₁₀ 日平均值比較分析圖

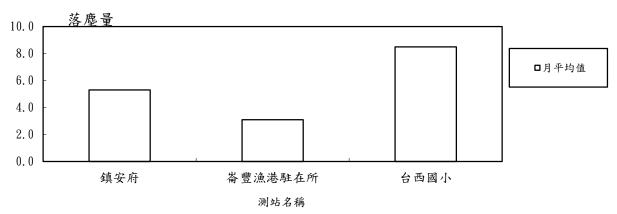


圖 2.1-10 114 年度第 3 季各測站落塵量平均值比較分析圖

2.2 噪音

114年第2季環境噪音監測工作已於114年8月23日至24日進行, 各測站均進行一次連續24小時監測,各測站噪音儀器現場校正紀錄列於 附錄三,連續24小時噪音逐時監測成果,則詳附錄四-2-1~5,綜合成果 分析整理於表2.2-1,並製成果分析及逐時變化圖如圖2.2-1~5所示。

依據雲林縣環保局 112年 12月 15日公告之雲林縣噪音管制區說明:「學校、圖書館、醫療機構之周界外五十公尺範圍內」屬於特定噪音管制區,崙豐國小噪音管制標準之最高容許音量降低 5 分貝,查本季各測站監測結果皆符合噪音管制標準。

表 2.2-1 114 年第 3 季噪音各時段均能音量監測結果分析

時段別	測站		海豐橋	崙豐國小	海口橋	五條港出入 管制站
監	測日期	114.8.23-24	114.8.23-24	114.8.23-24	114.8.23-24	114.8.23-24
La	監測值	65.9	69.6	66.5	64.5	52.7
La	標準值	74.0	74.0	69.0	74.0	74.0
L _晚	監測值	60.1	67.2	62.5	60.6	51.3
上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	標準值	70.0	70.0	65.0	70.0	70.0
$L_{ar{q}}$	監測值	59.1	62.4	60.2	57.4	47.8
上夜	標準值	67.0	67.0	62.0	67.0	67.0
管制[路邊地區,第二 類,緊鄰 8 公尺 (含)以上道路	類,緊鄰8公尺		類,緊鄰8公尺	-

備註:1.單位:dB(A)

^{2.}管制區標準類屬資料來源:雲林縣環境保護局

^{3.&}quot;*"表示超過標準之限值

^{4.}時段別係依據 99 年 1 月 21 日環境部(原行政院環境保護署)環署空字第 0990006225D 號令、交通部交路字第 0990085001 號令公告「環境音量標準」調整。

^{5.}依據雲林縣環保局 112 年 12 月 15 日公告之雲林縣噪音管制區, 崙豐國小之周界外五十公 尺範圍內屬於特定噪音管制區, 其噪音管制標準之最高容許音量降低 5 分貝。



圖 2.2-1 安西府 114 年第 3 季噪音監測成果分析圖及逐時變化圖

圖 2.2-2 海豐橋 114 年第 3 季噪音監測成果分析圖及逐時變化圖

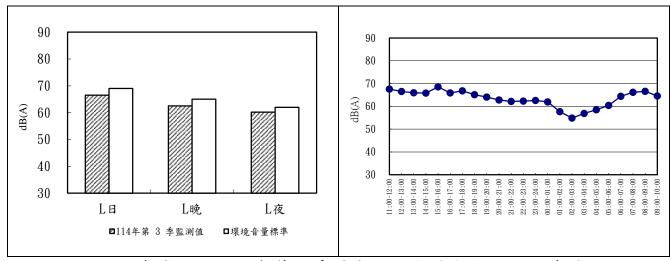


圖 2.2-3 崙豐國小 114 年第 3 季噪音監測成果分析圖及逐時變化圖

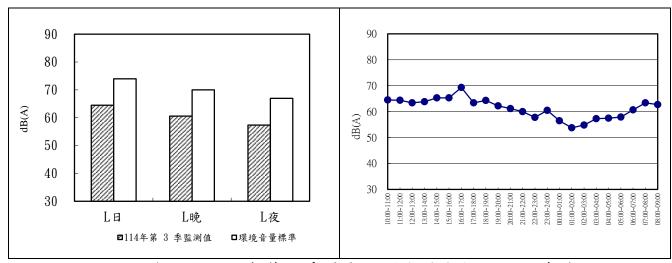


圖 2.2-4 海口橋 114 年第 3 季噪音監測成果分析圖及逐時變化圖

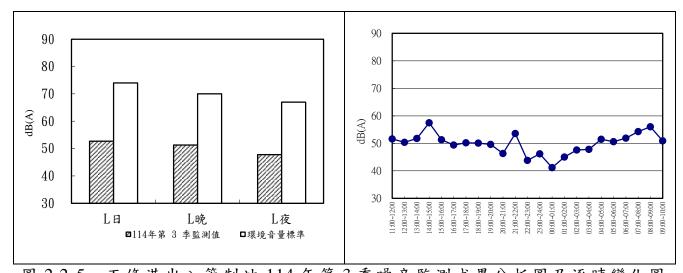


圖 2.2-5 五條港出入管制站 114 年第 3 季噪音監測成果分析圖及逐時變化圖

2.3 振動

本季離島產業園區振動調查工作 114 年 8 月 23 日至 24 日和噪音調查同時同地點進行,各測站均分別進行一次連續 24 小時調查,各測站連續 24 小時調查結果詳見附錄四-3-表 1~表 5,各時段 Lv10 均能振動調查結果則整理於表 2.3-1 及圖 2.3-1~圖 2.3-5,所有測值皆低於人體有感振動位準 55 dB 之測值。由於我國尚未制定環境振動管制相關法規,故參考表 2.3-2 日本東京都公害振動規制基準之限制。

時段別	測 站	安西府	海豐橋	崙豐國小	23-24 114.8.23-24 2 31.2 0 70.0 5 30.0	五條港出 入管制站
監測日	期	114.8.23-24	114.8.23-24	114.8.23-24	114.8.23-24	114.8.23-24
Lv a	監測值	34.4	37.1	40.2	31.2	30.0
LVB	法規值	65.0	70.0	65.0	70.0	65.0
Iv.	監測值	30.8	31.6	33.5	30.0	30.0
Lv _夜	法規值	60.0	65.0	60.0	65.0	60.0
Lv ₁₀ (24 小時)	監測值	33.2	35.6	38.5	30.8	30.0

表 2.3-1 114 年第 3 季各時段 Lv10 均能振動監測結果分析

備註: 1.單位:dB

依日本東京都振動規

制之區域區分

第一種區域

第二種區域

第一種區域

第二種區域

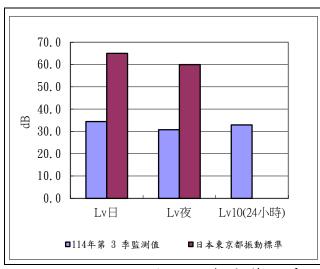
表 2.3-2 日本東京都道路交通及營建工程公害振動規制基準

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
時間區分區域區分	日間標準值(Lv ₁₀)	夜間標準值(Lv ₁₀)
第一種區域	65 分貝	60 分貝
第二種區域	70 分貝	65 分貝

資料來源:環境部,日本振動管制法,民國79年5月。

第一種區域

^{2.}法規值係參照表 2.3-2 日本振動管制法施行規則,第一種區域相當於我國第一、二類噪音管制區,第二種區域相當我國第 三、四類噪音管制區。


^{3. &}quot;*"表示超過標準之限值。

註:1.以垂直振動為限,其參考位準為0dB等於10m/sec。

所謂第一種區域,約相當於我國噪音管制區之第一類及第二類管制區;第二種區域,約相當於我國噪音管制區之第三類及第四類管制區。

^{2.}所謂日間是從上午五時、六時、七時或八時開始到下午七時、八時、九時或十時為止。所謂夜間是從下午八時、九時或十時開始到翌日上午五時、六時、七時為止。

^{3.}本計畫之振動均能計算採用的時間劃分,日間係由上午五時到下午七時,夜間為下午七時到翌日五時。

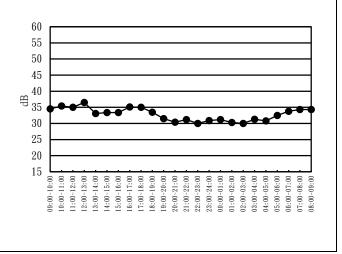
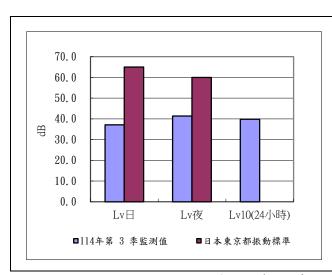



圖 2.3-1 安西府 114 年度第 3 季振動監測成果分析圖及逐時變化圖

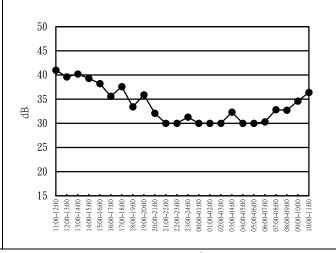
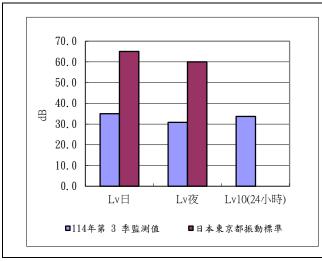



圖 2.3-2 海豐橋 114 年度第 3 季振動監測成果分析圖及逐時變化圖

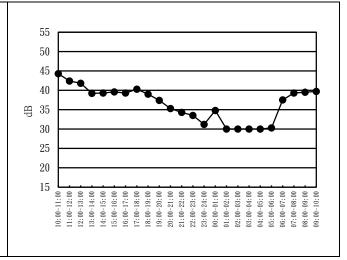
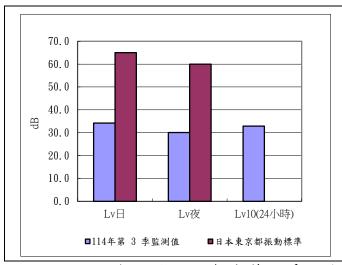



圖 2.3-3 崙豐國小 114 年度第 3 季振動監測成果分析圖及逐時變化圖

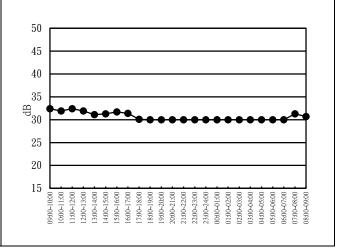
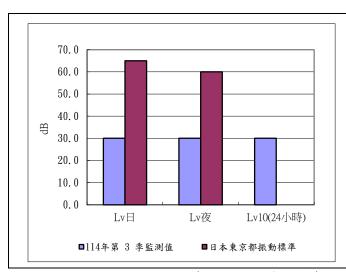



圖 2.3-4 海口橋 114 年度第 3 季振動監測成果分析圖及逐時變化圖

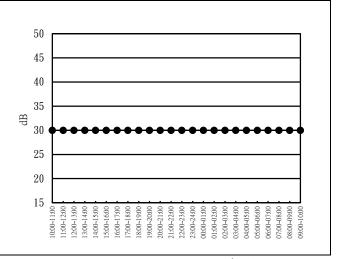


圖 2.3-5 五條港出入管制 114 年度第 3 季振動監測成果分析圖及逐時變 化圖

2.4 交通量

2.4.1 交通量及道路服務水準

本季交通量調查工作於 114 年 8 月 23 日至 24 日進行,各測站均進行一次連續 24 小時調查,全日交通流量則整理於表 2.4.1-1 及圖 2.4.1-1,8個測站中以崙豐國小 6,944 PCU/日最高,而以海口橋 1,787 PCU/日最低。

為評估道路系統服務品質之優劣,可由服務水準之高低加以衡量,一般評估道路服務水準之指標常以道路交通流量(V)與道路設計服務流量(C)之比值(V/C)為指標,並依表 1.5.4-1 分為 A、B、C、D、E及F等六等級,其中道路設計服務流量乃指現有道路及交通情況下,單位時間內該道路可容許最大車流量(以小客車當量 P.C.U.計),可由該道路數、等級、所在區域及路基寬特性,依表 1.5.4-2 得知其設計實用最高小時容量,而道路交通流量則為實際現場測定所獲得之交通流量。表 2.4.1-2 即為依此計算本計畫 8 個交通流量測站之尖峰小時道路服務水準等級,本季之最高尖峰小時道路服務水準各測站最高尖峰小時道路服務水準介於 A~B級。

以下即分別說明各測站本季交通量及道路服務水準等級(最高小時) 之調查結果。(詳表 2.4.1-1 及表 2.4.1-2 所示)

一. 安西府(一)

本季交通調查,交通量為 4,654 輛/日,車種組成以小型車佔 81.50 %最高,其次為機車佔 18.35 %,大型車佔 0.15 %,特種車佔 0.00 %最低。

本測站設於安西府前之台 17 省道與通往台西區道路交又口旁,安西府(一)測站主要調查台 17 省道上往來崙豐國小及海口橋之間交通流量。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站實測本季之最高小時交通流量發生在 13:00~14:00 為 578.0 PCU/時,V/C 值為 0.28,因此本路段本季調查之最高小時服務水準為 C 級。

二.安西府(二)

本季交通調查,交通量為 2,955 輛/日,車種組成以小型車佔 87.82 %最高,其次為機車佔 11.99 %,大型車佔 0.19 %及特種車佔 0.00 %最低。

本測站設於安西府前之台 17 省道與通往台西區道路交又口旁,安西府(二)測站主要調查往來台西區及海口橋之間交通流量。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站

本季實測之最高小時交通流量發生在 07:00~08:00 為 257.0 PCU/時, V/C 值為 0.12,因此本路段本季調查之最高小時服務水準為 B 級。

三. 安西府(三)

本季交通調查,交通量為 2,571 輛/日,車種組成以小型車佔 84.85 %最高,其次為機車佔 14.94 %,大型車佔 0.22 %及特種車佔 0.00 %最低。

本測站設於安西府前之台 17 省道與通往台西區道路交叉口旁,安西府(三)測站主要調查往來台西區及崙豐橋之間交通流量。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在 15:00~16:00 為 378.5 PCU/時,V/C 值為 0.18,因此本路段本季調查之最高小時服務水準為 B 級。

四.海豐橋

本季交通調查,交通量為 4,660 輛/日,車種組成以小型車佔 70.58 %最高,其次為機車佔 25.56 %,特種車佔 2.24 %,大型車佔 1.62 %最低。

本測站設於台 17 省道跨新虎尾溪之海豐橋附近,為台西鄉與麥寮間之主要交通要道。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在11:00~12:00 為 296.0 PCU/時,V/C 值為 0.14,因此本路段本季調查之最高小時服務水準為 A 級。

五. 崙豐國小

本季交通調查,交通量為 6,944 輛/日,車種組成以小型車佔 72.16 %最高,其次為機車佔 27.26 %,大型車佔 0.58 %,特種車佔 0.00 %最低。

本測站設於崙豐國小校門口前,面臨台 17 省道,北行為雲 3 與台 17 省道交匯口,本測站測值可反應台西往麥寮及麥寮區工地交通流量之匯總。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在 09:00~10:00 為 609.0 PCU/時, V/C 值為 0.29,因此本路段本季調查之最高小時服務水準為 C 級。

六.海口橋

本季交通調查,交通量為 1,787 輛/日,車種組成以小型車佔 78.10 %最高,其次為機車佔 20.14 %,大型車佔 1.39 %,特種車佔 0.36 %最低。

本測站設於台 17 省道跨舊虎尾溪之海口橋附近,目前監測站代表新興及台西區施工前南側主要道路交通品質。此外,依表 2.4.1-2本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在 11:00~12:00 為 87.5 PCU/時,V/C 值為 0.04,因此本路段本季調查之最高小時服務水準為 A 級。

七. 五條港出入管制站

本季交通調查,交通量為 2,288 輛/日,車種組成以小型車佔 77.26 %最高,其次為機車佔 21.79 %,特種車佔 0.40 %,大型車佔 0.55%最低。

本測站設於五港漁港駐在所旁,面臨中央路為往新興區工地之施工車輛專用道,監測結果代表目前進出專用道一般車輛交通量。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在 16:00~17:00 為 127.5 PCU/時,V/C 值為 0.06,因此本路段本季調查之最高小時服務水準為 A級。

八.華陽府

本季交通調查,交通量為 2,071 輛/日,車種組成以小型車佔 72.51 %最高,其次為機車佔 26.26 %,大型車佔 1.07 %,特種車佔 0.17 %。

本測站設於光華村華陽府寺廟旁,面臨 158 號道路,監測結果代表目前台西與東勢間一般車輛交通流量。此外,依表 2.4.1-2 本路段之最高小時容量設計為 2,100 PCU/時,而本測站本季實測之最高小時交通流量發生在 17:00~18:00 為 146.5 PCU/時, V/C 值為 0.07,因此本路段本季調查之最高小時服務水準為 A 級。

表 2.4.1-1 本季交通量監測成果

單位:輛/日

						平位,	干附 / 山
測站	日期	機車	小型車	大型車	特種車	總計	PCU/日
安西府	114.8.23~24	854	3,793	7	0	4,654	4,234
	百分比(一)	18.35%	81.50%	0.15%	0.00%	100.0%	-
(-)	百分比(二)	10.09%	89.58%	0.33%	0.00%	-	100.0%
安西府	114.8.23~24	376	2,755	6	0	3,137	2,955
	百分比(一)	11.99%	87.82%	0.19%	0.00%	100.0%	-
(二)	百分比(二)	6.36%	93.23%	0.41%	0.00%	-	100.0%
安西府	114.8.23~24	414	2,352	6	0	2,772	2,571
	百分比(一)	14.94%	84.85%	0.22%	0.00%	100.0%	-
(三)	百分比(二)	8.05%	91.48%	0.47%	0.00%	-	100.0%
	114.8.23~24	1,276	3,524	81	112	4,993	4,660
海豐橋	百分比(一)	25.56%	70.58%	1.62%	2.24%	100.0%	-
	百分比(二)	13.69%	75.62%	3.48%	7.21%	-	100.0%
	114.8.23~24	2,177	5,763	46	0	7,986	6,944
崙豐國小	百分比(一)	27.26%	72.16%	0.58%	0.00%	100.0%	-
	百分比(二)	15.68%	83.00%	1.32%	0.00%	-	100.0%
	114.8.23~24	391	1,516	27	7	1,941	1,787
海口橋	百分比(一)	20.14%	78.10%	1.39%	0.36%	100.0%	-
	百分比(二)	10.94%	84.86%	3.02%	1.18%	-	100.0%
五條港出	114.8.23~24	551	1,954	14	10	2,529	2,288
	百分比(一)	21.79%	77.26%	0.55%	0.40%	100.0%	-
入管制站	百分比(二)	12.04%	85.42%	1.22%	1.31%	-	100.0%
	114.8.23~24	616	1,701	25	4	2,346	2,071
華陽府	百分比(一)	26.26%	72.51%	1.07%	0.17%	100.0%	-
	百分比(二)	14.87%	82.13%	2.41%	0.58%	-	100.0%

註:1.百分比(一)係指各類型車輛數佔總車輛數之百分比。

^{2.}百分比(二)係指各類型車輛之 PCU 當量佔總 PCU 之百分比。

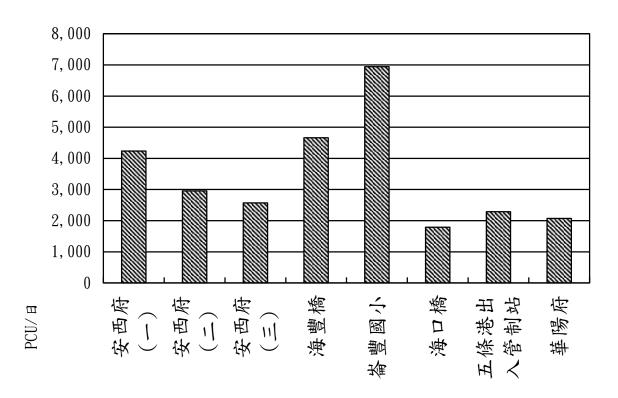


圖 2.4.1-1 本季各測站交通流量(PCU/日)調查結果分析圖

表 2.4.1-2 本季道路服務水準等級調查結果分析表

測站	所臨道路	路寬 (公尺)	車道數	設計實用最高小時 容量(c)(PCU/H)	最高小時交通 發生時間	量(v) PCU/H	V/C	服務水準等級
安西府 (一)	台 17	11.4	雙車道	2,100	13:00~14:00	578.0	0.28	С
安西府 (二)	台 17	14.5	雙車道	2,100	07:00~08:00	257.0	0.12	В
安西府 (三)	中央路	12.4	雙車道	2,100	15:00~16:00	378.5	0.18	В
海豐橋	台 17	18.2	多車道	2,100	11:00~12:00	296.0	0.14	A
崙豐國小	台 17	13.5	雙車道	2,100	09:00~10:00	609.0	0.29	С
海口橋	台 17	18	多車道	2,100	11:00~12:00	87.5	0.04	A
五條港出 入管制站	中央路	15.2	多車道	2,100	16:00~17:00	127.5	0.06	A
華陽府	縣 158	11.2	雙車道	2,100	17:00~18:00	146.5	0.07	A

2.5 陸域生態

2.5.1 陸域動物生態監測

一、哺乳類

本季共記錄 3 科 6 種 46 隻次哺乳類動物,詳如表 2.5-1。六種哺乳類動物均為臺灣平地或低山的常見種類。其中東亞家蝠是本季出現頻度最高的物種,計有 25 隻的紀錄;次多的物種為臭鼩,計有 16 隻的紀錄。新吉在本季有 4 種哺乳類動物出現,是種數最多的樣區;五條港、三條崙及台子均只有 2 種哺乳類動物出現,種數相對較少。在個體數量上則是以四湖有 10 隻最多,台子只有 4 隻最少。

以穿越線捕捉法捕獲的哺乳類動物共有 14 隻;七個樣區的總捕獲率為 21.5%,捕獲的動物有田鼷鼠、家鼷鼠及臭鼩。海豐的捕獲率為 40%,是捕獲率最高的樣區;其次是五條港有 30%的捕獲率(表 2.5.1-1)。

各樣區的歧異度以新吉最高 (1.24),其次是海豐 (1.01);均匀 度以台子最高 (2.30),海豐居次 (2.12)。

表 2.5.1-1 本季雲林離島產業園區監測哺乳類名錄及數量

科/學名				樣	區			合計
件/字石	新吉	海豐	五條港	三條崙	四湖	台西	台子	
蝙蝠科 Vespertilionidae 東亞家蝠 <i>Pipistrellus abramus</i> 鼠科 Muridae	1	3	1	7	7	4	2	25
鬼鼠 Bandicota indica 田鼷鼠 Mus caroli 家鼷鼠 Mus musculus 小黃腹鼠 Rattus losea 尖鼠科 Soricidae	1 1°	1			1°	1°		1 1 2 1
臭鼩 Suncus murinus	$1,1^d,1^c$	2°	1,3°	1,1°	1,1°	1 °	2°	16
隻 次 數	6	6	5	9	10	6	4	46
種數	4	3	2	2	3	3	2	6
捕獸器數量	10	5	10	10	10	10	10	65
捕獲率(%)	20	40	30	10	20	20	20	21.5
Shannon-Wiener's index (H)	1.24	1.01	0.50	0.53	0.80	0.87	0.69	1.08
Pielou's evenness index (J)	2.06	2.12	1.66	1.76	1.68	1.82	2.30	1.39

c:捕獲;d:遺骸

二、鳥類

本季共記錄到 20 科 37 種 1115 隻次的鳥類 (表 2.5.1-2)。麻雀是最多的鳥種,其數量有 347 隻次,佔鳥類總數的 31.1%;小白鷺有 168 隻次,佔總數的 15.1%,是數量次多的鳥類。本季在五條港記錄到 20 種鳥類,是 7個樣區中鳥種數最多的樣區;三條崙及四湖僅記錄到 12 種鳥類,種數最少。在數量上以台子記錄到 255 隻次為最多;其次是台西有 245 隻次;三條崙僅記錄 84 隻次最少。

本次監測記錄到的鳥類中,小彎嘴是屬於臺灣特有種;特有亞種有金背鳩、大卷尾、黑枕藍鶲、黃頭扇尾鶯、褐頭鷦鶯及白頭翁等共6種。從鳥類的生息狀態來看,留鳥有25種(含兼具冬候鳥、夏候鳥或過境鳥屬性者),冬候鳥有15種(含兼具留鳥、夏候鳥或過境鳥屬性者),夏候鳥有4種(含兼具留鳥、冬候鳥或過境鳥屬性者),過境鳥有9種(含兼具留鳥、夏候鳥或冬候鳥屬性者),引進種有4種。在保育類方面,屬於「其他應予保育類」的動物有紅尾伯勞。

表 2.5.1-2 本季雲林離島產業園區監測鳥類名錄及數量

* 2.	.5.1-2	本字雲林	四五次	一种规	石 跳り	义 蚁 里					
科 / 學名	特有性	生息狀態	保育等				樣 區				合計
件/字石	付付住	土尽水怨	級	新吉	海豐	五條港	三條崙	四湖	台西	台子	一百日
鸊鷉科 Podicipedidae											
小鸊鷉 Tachybaptus ruficollis poggei		留、普/冬、普					2			1	3
鳩鴿科 Columbidae											
珠頸斑鳩 Spilopelia chinensis		留、普		1		2	10	5	2		20
金背鳩 Streptopelia orientalis orii	特亞	留、普(orii)/過、稀				2			1		3
紅鳩 Streptopelia tranquebarica		留、普		18	1	34		13	49	2	117
humilis		ш ш		10	1	34		13	7)	2	117
長腳鷸科 Recurvirostridae											
高蹺鴴 Himantopus himantopus		留、不普/冬、普			8	1				32	41
億科 Charadriidae					_	4.0					
東方環頸鴴 Charadrius alexandrinus		留、不普/冬、普			6	19					25
太平洋金斑鴴 Pluvialis fulva 鷸科 Scolopacidae		冬、普			3						3
磯鷸 Actitis hypoleucos		冬、普				2				1	3
鷹斑鷸 Tringa glareola		冬、普/過、普			3	2				1	3
青足鷸 Tringa nebularia		冬、普			5	3					8
赤足鷸 Tringa totanus ussuriensis		冬、普			3	1					1
鷗科 Laridae		У П				1					1
黑腹燕鷗 Chlidonias hybrida hybrida		冬、普/過、普			26					7	33
鷺科 Ardeidae											
大白鷺 Ardea alba modesta		留、不普/夏、不普/冬、		1	1					22	2.5
入日寫 Araea aiba moaesia		普		1	1					23	25
黃頭鷺 Bubulcus ibis coromandus		留、不普/夏、普/冬、普/							28		28
央 以 局 Duonicus iois coromunuus		過、普							20		20
小白鷺 Egretta garzetta garzetta		留、不普/夏、普/冬、普/		1	12	34	5			116	168
		過、普		-	- -						- 33
夜鷺 Nycticorax nycticorax		留、普/冬、稀/過、稀		2			2			3	7
nycticorax 翠鳥科 Alcedinidae											
		切、並/遇、不並				1					1
翠鳥 Alcedo atthis bengalensis		留、普/過、不普				1					1

性右州	小白铅能	保育等				樣 區				合計
付付任	土总水怨	級	新吉	海豐	五條港	三條崙	四湖	台西	台子	
特亞	留、普		1		3		1	2		7
作式 工艺	5刀 、 並		4							4
付证	田・目		4							4
	冬、普/過、普	III	2				1			3
	留、普			2						2
特亞	留、不普							2		2
	留、普		4		1	3	3	2	3	16
特亞	留、普		6	4	4	2	5	6	7	34
	留、普								21	21
	夏、普/冬、普/過、普			7	2					9
	留、普					6			1	7
	留、普								6	6
特亞	留、普		15	6	2	5	13	6	5	52
	留、普		7	4	12	2		1	1	27
特	留、普						1			1
	引進種、普		1	3	7	5	15	12	12	55
	引進種、普			2	3		2	2	3	12
								8		8
	引進種、普		3			1				4
	· · · · · · · · · · · ·									
	留、普				5		4			9
							•			
	特 亞 亞 亞	特	特件 生息狀態 特亞 留 留 普 留 部 会 日 日 日 <t< td=""><td>特亞 生息狀態 特亞 留、普 特亞 4 冬、普/過。普 III 特亞 留、不普 特亞 留、不普 特亞 4 6 6 夢/空 4 每 4 6 6 中亞 4 6 6 日本 4 6 6 日本 4 6 6 日本 4 日本 6 日本 15 日本 7 日本 1 日本 1 日本 1 日本 1 日本 3</td><td>特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普 III 留、普 4 特亞 留、不普 特亞 留、普 特亞 留、普 每 4 6 4 夏、普/多留、普 7 特亞 留、普 7 特亞 日 7 特亞 日 7 特亞 日 1 3 月進種、普 引進種、普 3 引進種、普 引進種、普 3</td><td>特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普留、普留、普留、普留、普留、普留、普留、普留、普留、普合。 4 4 1 4 1 6 4 4 1 6 4 4 1 6 4 4 1 6 4 4 1 6 4 4 1 7 2 特亞 15 6 2 2 特亞 1 3 7 4 12 特亞 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 2 3 3</td><td>特亞 生息狀態 特亞 留、普 特亞 留、普 4 3 特亞 留、普 特亞 留、普 特亞 留、不普留、普留、普留、普合。4 4 1 3 3 特亞 日本普灣區、普合。4 日本普灣區、普內 15 日本 12 日本 1 日本</td><td>特亞 生息狀態 新吉 海豐 五條港 三條崙 四湖 特亞 留、普 1 3 1 特亞 留、普 4 2 1 特亞 留、普 4 1 3 3 特亞 留、普 4 1 3 3 特亞 留、普 4 4 4 2 5 留、普 6 4 4 2 5 留、普 7 2 6 特亞 留、普 7 4 12 2 特 留、普 7 4 12 2 特 留、普 1 3 7 5 15 引進種、普 引進種、普 3 1 1</td><td>特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普留、普留、普留、普留、普留、普留、普留、普留、普留、普留、普合。 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 3 2 6 4 4 1 3 3 2 6 6 4 4 1 3 3 7 2 6 4 4 1 3 3 7 2 6 2 5 13 6 2 7 4 12 2 1 3 7 5 15 15 1 3 7 4 12 2 3 1 1 3 1 3 1 3 2 3 3 1</td><td>特亞 生息狀態 新吉 海豐 五條港 三條崙 四湖 台西 台子 特亞 留、普 4 3 1 2 特亞 留、普 4 4 1 3 3 2 3 特亞 留、不普留、普留、普留、普留、普留、普留、普合 4 4 4 2 5 6 7 夏、普/冬、普/過、普留、普留、普合 7 2 6 1 6 特亞 留、普留、普合 7 4 12 2 1 1 特亞 日進種、普引進種、普引進種、普引進種、普引建種、普引建種、普引建種、普引建種、普引建種、普引建種、普引建種、普別建種、普別建種、普別建種、普別 3 1</td></t<>	特亞 生息狀態 特亞 留、普 特亞 4 冬、普/過。普 III 特亞 留、不普 特亞 留、不普 特亞 4 6 6 夢/空 4 每 4 6 6 中亞 4 6 6 日本 4 6 6 日本 4 6 6 日本 4 日本 6 日本 15 日本 7 日本 1 日本 1 日本 1 日本 1 日本 3	特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普 III 留、普 4 特亞 留、不普 特亞 留、普 特亞 留、普 每 4 6 4 夏、普/多留、普 7 特亞 留、普 7 特亞 日 7 特亞 日 7 特亞 日 1 3 月進種、普 引進種、普 3 引進種、普 引進種、普 3	特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普留、普留、普留、普留、普留、普留、普留、普留、普留、普合。 4 4 1 4 1 6 4 4 1 6 4 4 1 6 4 4 1 6 4 4 1 6 4 4 1 7 2 特亞 15 6 2 2 特亞 1 3 7 4 12 特亞 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 4 1 3 7 2 3 3	特亞 生息狀態 特亞 留、普 特亞 留、普 4 3 特亞 留、普 特亞 留、普 特亞 留、不普留、普留、普留、普合。4 4 1 3 3 特亞 日本普灣區、普合。4 日本普灣區、普內 15 日本 12 日本 1 日本	特亞 生息狀態 新吉 海豐 五條港 三條崙 四湖 特亞 留、普 1 3 1 特亞 留、普 4 2 1 特亞 留、普 4 1 3 3 特亞 留、普 4 1 3 3 特亞 留、普 4 4 4 2 5 留、普 6 4 4 2 5 留、普 7 2 6 特亞 留、普 7 4 12 2 特 留、普 7 4 12 2 特 留、普 1 3 7 5 15 引進種、普 引進種、普 3 1 1	特亞 生息狀態 特亞 留、普 特亞 留、普 4 4 冬、普/過、普留、普留、普留、普留、普留、普留、普留、普留、普留、普留、普合。 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 3 2 6 4 4 1 3 3 2 6 6 4 4 1 3 3 7 2 6 4 4 1 3 3 7 2 6 2 5 13 6 2 7 4 12 2 1 3 7 5 15 15 1 3 7 4 12 2 3 1 1 3 1 3 1 3 2 3 3 1	特亞 生息狀態 新吉 海豐 五條港 三條崙 四湖 台西 台子 特亞 留、普 4 3 1 2 特亞 留、普 4 4 1 3 3 2 3 特亞 留、不普留、普留、普留、普留、普留、普留、普合 4 4 4 2 5 6 7 夏、普/冬、普/過、普留、普留、普合 7 2 6 1 6 特亞 留、普留、普合 7 4 12 2 1 1 特亞 日進種、普引進種、普引進種、普引進種、普引建種、普引建種、普引建種、普引建種、普引建種、普引建種、普引建種、普別建種、普別建種、普別建種、普別 3 1

科 / 學名	特有性	生息狀態	保育等		樣。區						合計
件/学石	村有任	生尽水怨	級	新吉	海豐	五條港	E 三條崙 四湖 41 55 84 118 12 12 1.82 1.77	台西	台子		
麻雀 Passer montanus saturatus		留、普		52		64	41	55	124	11	347
隻	118	93	202	84	118	245	255	1115			
看	重數			15	16	20	12	12	14	18	37
Shannon-Wi	ener's inde	x (H')		1.89	2.40	2.16	1.82	1.77	1.60	1.97	2.57
Pielou's eve	$\kappa(J')$		1.61	2.00	1.66	1.69	1.64	1.39	1.57	1.64	
此正, 声纖此七正任, 切, 切白, 为, 为任白,	まな、意識は大な狂。の、の白、夕、夕に白、湿、湿斑白、百、百に白。										

特亞:臺灣特有亞種。留:留鳥,冬:冬候鳥,過:過境鳥,夏:夏候鳥。

Ⅱ:珍貴稀有保育類;Ⅲ:其他應予保育類。

三、爬行類

本季發現的爬行類動物有 5 科 7 種 175 隻 (表 2.5.1-3), 其中斯文豪氏攀蜥及蓬萊草蜥為臺灣特有種;臺灣中國石龍 子為特有亞種。除了多線真稜蜥及長尾真稜蜥是主要分布在 臺灣中南部的物種,其餘都是臺灣西部平地及低山的常見種。 疣尾蝎虎本季有 128 隻的紀錄,是本季的優勢種;無疣蝎虎 有 33 隻次出現,是次優勢種。台西有 5 種,是種類相對較多 的樣區。在數量上則是以四湖有 42 隻次最多,台子有 36 隻 次居次。

各樣區的歧異度以台西最高 (1.36),其次是三條崙 (0.92);均勻度以海豐最高 (2.11),其次為台西 (1.94)。表 2.5.1-3 本季雲林離島產業園區監測爬行類名錄及數量

秋 2.3.1 5 本于云州		7	,		樣區		<u> </u>		1.6. 4
科/學名	特有性	新吉	海豐	五條港	三條崙	四湖	台西	台子	合計
壁虎科 Gekkonidae									
無疣蝎虎 Hemidactylus bowringii		8	3	1	5	10	1	5	33
疣尾蝎虎 Hemidactylus frenatus		23	6	18	13	32	6	30	128
飛蜥科 Agamidae									
斯文豪氏攀蜥 Diploderma swinhonis	特	1							1
正蜥科 Lacertidae									
蓬萊草蜥 Takydromus	特			2			2		4
stejnegeri									
石龍子科 Scincidae									
長尾真稜蜥 Eutropis					3				3
longicaudata									
多線真稜蜥 Eutropis	引進種			1				1	2
multifasciata 中國石龍子 Plestiodon									
chinensis formosensis	特亞	1							1
盲蛇科 Typhlopidae									
鈎盲蛇 Indotyphlops braminus							1		1
地龜科 Geoemydidae									
斑龜 Mauremys sinensis							2		2
隻 次 數		33	9	22	21	42	12	36	175
種 數		4	2	4	3	2	5	3	9
Shannon-Wiener's index (H')		0.81	0.64	0.66	0.92	0.55	1.36	0.53	0.89
Pielou's evenness index (J')		1.34	2.11	1.10	1.92	1.82	1.94	1.10	0.93

四、兩棲類

本季記錄到兩棲類動物 5 科 5 種 282 隻次,全為臺灣平

地及低海拔山區的常見種。本次調查中,在海豐、五條港及台子未記錄到兩棲類。以物種數而言,新吉記錄到4種最多;三條崙及台西各記錄到3種次之。就個體數量而言,以新吉記錄到97隻次最多,其次為三條崙樣區有92隻次。黑眶蟾蜍是本季的優勢種,出現的數量有123隻,次優勢種為澤蛙,共記錄到107隻。(表2.5.1-4)

在多樣性指數方面,歧異度值以三條崙最高 (1.06),新吉次之 (0.75)。均勻度值以三條崙最高 (2.22),四湖次之 (2.13)。

表 2.5.1-4 本季雲林離島產業園區監測兩棲類名錄及數量

科/學名	胜去				樣 區				ک÷۲
件 / 字石 	特有性	新吉	海豐	五條港	三條崙	四湖	台西	台子	合計
蟾蜍科 Bufonidae 黑眶蟾蜍 Duttaphrynus melanostictus 樹蛙科 Rhacophoridae		76			19	26	2		123
斑腿樹蛙 Polypedates megacephalus	引進 種	10					1		11
叉舌蛙科 Dicroglossidae 澤蛙 Fejervarya limnocharis 赤蛙科 Ranidae		4			39	50	14		107
貢德氏赤蛙 Sylvirana guentheri		7							7
狭口蛙科 Microhylidae 小雨蛙 Microhyla fissipes					34				34
隻 次 數		97	0	0	92	76	17	0	282
種 數		4	0	0	3	2	3	0	5
Shannon-Wiener's index (H')		0.75	-	-	1.06	0.64	0.58	-	1.20
Pielou's evenness index (J')		1.24	-	-	2.22	2.13	1.21	-	1.72

五、蝶類

本次調查共記錄到蝶類 4 科 11 種共 140 隻次 (表 2.5-5), 全為臺灣平地開墾環境及低海拔山區的常見種,其中大鳳蝶、 雲紋粉蝶及黃蛺蝶為臺灣特有亞種。波紋小灰蝶及黃蝶是本 季數量最多的兩種蝶類,其數量分別有 57 及 53 隻次。台子 在本季記錄到 5 種蝶類,是種數最多的樣區。在數量方面, 海豐有 54 隻次的紀錄,是數量最多的樣區,其次是台子有 32 隻次的紀錄。

各樣區的歧異度值以台子最高 (1.31),其次是四湖 (1.24);均匀度以台西最高 (2.29),其次為三條崙 (2.17)。

表 2.5.1-5 本季雲林離島產業園區監測蝶類名錄及數量

秋 2.3.1-3 平于云/	11-13F M		, H C	- THE 1/4	1/11/1/14	201.77	火 王		
701 / 684 fr	the deal of				樣 區				
科 / 學名	特有性	新吉	海豐	五條港	三條崙	四湖	台西	台子	合計
鳳蝶科 Papilionidae									
大鳳蝶 Papilio memnon heronus	特亞	1							1
粉蝶科 Pieridae									
雲紋粉蝶 Appias indra	#± JC					_			~
aristoxemus	特亞					5			5
銀紋淡黃蝶 Catopsilia pomona						1			1
黄蝶 Eurema hecabe		2	13	13	4	3	6	12	53
蛺蝶科 Nymphalidae									
樺蛺蝶 Ariadne ariadne pallidior					5				5
孔雀蛺蝶 Junonia almana								2	2
黄蛺蝶 Polygonia c-aureum	特亞							1	1
lunulata	44元							1	1
灰蝶科 Lycaenidae									
白尾小灰蝶 Euchrysops cnejus			1						1
波紋小灰蝶 Lampides boeticus			34	4	2		5	12	57
沖繩小灰蝶 Zizeeria maha				1		2			3
okinawana				1		2			3
迷你小灰蝶 Zizula hylax			6					5	11
隻 次 數		3	54	18	11	11	11	32	140
種 數		2	4	3	3	4	2	5	11
Shannon-Wiener's index (<i>H</i> ')		0.64	0.95	0.73	1.04	1.24	0.69	1.31	1.46
Pielou's evenness index (<i>J</i> ')		2.11	1.58	1.53	2.17	2.06	2.29	1.87	1.40

特亞:臺灣特有亞種。

2.5.2 陸域植物生態監測

一、植物種類

本次調查於九個樣區內 42 科 82 種植物,包含蕨類植物 2 科 2 種,裸子植物 1 科 1 種,雙子葉植物 36 科 67 種,單子葉植物 3 科 12 種。調查樣區中除人工造林地樣區以木麻黃、黃槿為最主要之組成外,其餘試驗林、天然次生林及草生地樣區之植物組成多為沿海平野常見種類大花咸豐草、大黍、印度田菁及巴拉草,在木本植物組成方面以木麻黃、構樹、黃槿、榕樹、小葉桑等,木本小苗以月橘、春不老、潺槁木薑子、臺灣海棗為主,草本植物則是以大黍、數珠珊瑚、印度田菁、大花豐草、鯽魚膽、巴拉草及林投等為主要組成,詳細植物名錄綜合整理詳見附錄一。

本季(114 秋)調查喬木覆蓋之區域地被植物種類比草生地植物穩定度較高,優勢種維持是木麻黃、黃槿、榕樹及血桐,環境及氣候之影響不明顯,本季與上季地被物種及覆蓋差異不大,本季調查地被植物主要為數珠珊瑚、鯽魚膽、印度田菁及巴拉草。在樣區中所記錄到的植物其生態習性大多為好陽性植物,顯示樣區中的植被仍在演替初期;但於混合造林地樣區亦有耐陰性物種的出現。

二、植被類型

雲林縣沿海區域整體植被類型大致可區分為人工植被及天然植被。如果以微棲地特性及土地利用方式來區分,則可區分為海岸防風林、旱作耕地、水田、天然次生林及草生地等型態。在雲林沿海地區的天然植被以草生地與次生林為主,主要是從廢耕地、廢魚塭及海岸填土區等歷經一段時間後自然演替形成。人工植被則以海岸防風林為主,主要造林樹種為木麻黃及少數幾種闊葉樹。監測區域各樣區之植被類型分述如下:

(一)新吉濁水溪口魚塭樣區(Plot I)

表 2.5.2-1 新吉濁水溪口魚塭樣區喬木監測結果

種類	血桐	構樹	銀合歡	總計
株數	6.0	10.0	17.0	33.0
斷面積總和(cm²)	927.1	1014.8	1092.5	3034.3
相對密度	18.2	30.3	51.5	100.0
相對優勢度	30.6	33.4	36.0	100.0
IVI	48.7	63.7	87.5	200.0

(二)台西三姓寮樣區(Plot III)

本樣區位於台西三姓寮的某一座五千歲廟後方的私人果園, 以其中一棵大榕樹為中心,樣區土壤質地為沙質土壤。本季(114 秋)樣區植物組成主要有木麻黃、月橘、血桐、榕樹、構樹、釋迦、 銀合歡、龍眼、馬櫻丹、林投、木瓜、三角葉西番蓮、數珠珊瑚、 槭葉牽牛及扛香藤,榕樹、血桐為喬木優勢植物,數珠珊瑚為地 被優勢植物,覆蓋面積佔全樣區。樣區中散生龍眼和木瓜小苗, 且族群多分布樣區東方。數珠珊瑚為強勢的外來種,在倒伏的榕 樹開闢的空域,族群有擴張現象,建立穩定族群並擴大中。本季 記錄到開花結果的物種有數珠珊瑚。喬木層監測詳表 2.5.2-2。

表 2.5.2-2 台西三姓寮樣區喬木監測結果

	·			- 71 171	- 1-7 1				
種類	木麻黄	月橘	血桐	榕樹	構樹	釋迦	銀合歡	龍眼	總計
株數	1.0	2.0	44.0	3.0	2.0	10.0	2.0	1.0	65.0
斷面積總和(cm²)	702.3	87.5	6766.8	191130.3	555.9	233.0	167.8	7.8	199651.3
相對密度	1.5	3.1	67.7	4.6	3.1	15.4	3.1	1.5	100.0
相對優勢度	0.4	0.0	3.4	95.7	0.3	0.1	0.1	0.0	100.0
IVI	1.9	3.1	71.1	100.3	3.4	15.5	3.2	1.5	200.0

(三)台西五塊厝樣區(Plot IV)

台西五塊厝樣區為一處位於農田和墳墓旁的次生林樣區,先 前有人為的擾動,故樣區內局部區域透光度大增,各種好陽性 植物大量生長,地被物種競爭激烈,種類變動亦大。樣區東北 方則為鬱閉的冠層,林下物種組成大多是月橘和隨季節周期性 改變的草本植物。樣區西北方有枯倒木,是較透光的環境,大 黍生長旺盛並占據大片區域。本季(114 秋)樣區植物組成主要有 小葉桑、月橘、血桐、苦楝、榕樹、構樹、銀合歡、龍眼、釋 迦、雞屎藤、馬櫻丹、鐵牛入石、野苦瓜、龍葵、三角葉西番 蓮、大黍、數珠珊瑚、雞母珠、羅漢松及臺灣海桐。喬木優勢 植物為榕樹,地被優勢種為大黍,佔樣區總面積 80%以上;次優 勢 種 為 月 橘 、 三 角 葉 西 番 蓮 , 在 樣 區 東 南 角 呈 現 大 片 塊 狀 分 布。本季可見樣區內物種組成複雜。除了在樣區西北方有構 樹、南方及中間空域區域有銀合歡、月橘等樹種的小苗散生之 外,大黍覆蓋的區域亦生長大量的藤本植物,如雞屎藤、三角 葉西番蓮等。本季記錄到的開花植物有馬櫻丹、數珠珊瑚、短 角苦瓜及大黍,结果植物有苦楝、月橘、馬櫻丹、數珠珊瑚、 釋迦、短角苦瓜及大黍。喬木層監測詳表 2.5.2-3。

表 2.5.2-3 台西五塊厝樣區喬木監測結果

種類	月橘	血桐	苦楝	榕樹	構樹
株數	30	4	3	3	20
斷面積總和(cm²)	879	756	1331	25287	1331
相對密度	38	5	4	4	25
相對優勢度	3	2	4	81	4
IVI	40.3	7.4	8.0	85.1	29.3
種類	銀合歡	釋迦	小葉桑	龍眼	總計
株數	15.0	2.0	2.0	1.0	80.0
斷面積總和(cm²)	500.4	102.7	864.4	42.3	31093.2
相對密度	18.8	2.5	2.5	1.3	100.0
相對優勢度	1.6	0.3	2.8	0.1	100.0
IVI	20.4	2.8	5.3	1.4	200.0

(四)林厝寮木麻黄造林地樣區(Plot V)

本樣區於 99 年夏季新設, 位於雲林縣中埔研究中心四湖工作 站內的木麻黃造林地, 鄰近工作站北方的多肉植物園。樣區的土 壤質地為鬆散的砂質地, 北邊是欖仁的造林地, 西北方有林投。 本季(114 秋)樣區植物組成主要有木麻黃、苦楝、銀合歡、潺稿 樹青、大花咸豐草、猩猩草、構樹、三角葉西番蓮、大黍、臺 灣海棗、朴樹、馬櫻丹、月橘、林投、銀葉樹、槭葉牽牛、五節芒 及木鱉果。本季樣區內喬木優勢物種為木麻黃, 地被優勢種為大 黍, 次優勢種是大花咸豐草。本季(114 秋)樣區內開花的植物只有 槭葉牽牛、大花咸豐草、大黍及猩猩草, 結果植物為大花咸豐草、 大黍及臺灣海棗。喬木層監測詳表 2.5.2-4。

丰	2524	44 压灾	十位世	次 H Lb 样	 后 丢 -	木監測結果
スペ	2.3.2-4	你后京	小	迈州地脉	四份ノ	1、 监 冽 հ 木

種類	木麻黄	苦楝	銀合歡	潺槁樹	樹青	總計
株數	17.0	2.0	1.0	3.0	1.0	24.0
斷面積總和(cm²)	8987.0	191.6	16.0	137.8	32.9	9365.3
相對密度	70.8	8.3	4.2	12.5	4.2	100.0
相對優勢度	96.0	2.0	0.2	1.5	0.4	100.0
IVI	166.8	10.4	4.3	14.0	4.5	200.0

(五)林厝寮混合造林地樣區(Plot VI)

本樣區位於四湖工作站內的人工混合造林地,樣區因受到大量樹木遮蔽,林下較為陰暗。本季(114 秋)樣區植物組成主要有欖仁、月橋、木麻黃、臺灣海桐、臺灣樂樹、白樹仔、石栗、朴樹、春不老、柑橘、黄槿、榕樹、潺稿樹、魯花樹、馬櫻丹、銀合歡、木瓜、三角葉西番蓮、雞屎藤、小花蔓澤蘭、瑪瑙珠、臺灣海棗、小葉厚殼樹、羅漢松、大葉山欖、枯里珍、槭葉牽牛、大葉合歡、紅瓜、大黍、茄苳、雷公根、叢立孔雀椰子及山枇杷。本季樣區內喬木優勢物種為黃槿,次優勢種為榕樹,地被優勢種為三角葉西番蓮,次優勢種是雞屎藤。本季(114 秋)樣區內開花的植物只有瑪瑙珠及春不老,結果植物為瑪瑙珠及春不老。樣區詳細喬木監測結果分析詳表 2.5.2-5。

表 2.5.2-5 林厝寮木麻黄造林地樣區喬木監測結果

種類	大葉欖仁	月橘	木麻黄	臺灣海桐	臺灣欒樹	大葉欖仁
株數	2.0	1.0	2.0	3.0	5.0	2.0
斷面積總和(cm²)	288.2	19.4	2913.4	321.1	695.9	288.2
相對密度	3.3	1.7	3.3	5.0	8.3	3.3
相對優勢度	1.9	0.1	19.0	2.1	4.5	1.9
IVI	5.2	1.8	22.3	7.1	12.9	5.2
種類	白樹仔	石栗	朴樹	春不老	柑橘	白樹仔
株數	1.00	2.00	5.00	3.00	1.00	1.00
斷面積總和(cm²)	16.81	244.33	1816.26	19.42	59.30	16.81
相對密度	1.67	3.33	8.33	5.00	1.67	1.67
相對優勢度	0.11	1.59	11.84	0.13	0.39	0.11
IVI	1.78	4.93	20.17	5.13	2.05	1.78
種類	黄槿	榕樹	潺槁樹	魯花樹	總計	黄槿
株數	17.0	6.0	10.0	2.0	60.0	17.0
斷面積總和(cm²)	4524.3	4081.8	230.9	110.6	15341.7	4524.3
相對密度	28.3	10.0	16.7	3.3	100.0	28.3
相對優勢度	29.5	26.6	1.5	0.7	100.0	29.5
IVI	57.8	36.6	18.2	4.1	200.0	57.8

(六)台塑木麻黄造林地樣區(Plot VIII)

本樣區為木麻黃人工造林地,位於雲林縣麥寮鄉台塑六輕工業區旁,樣區入口處有條排水溝,要從旁邊便橋才可進入。樣區內地表主要覆蓋物為木麻黃之落葉及枝條。本季(114 秋)樣區植物組成主要有木麻黃、血桐、巴西胡椒木、臺灣海桐、大黍、蘆葦、小花蔓澤蘭、瑪瑙珠、臺灣海棗、春不老、三角葉西番蓮、小毛蕨及毛西番蓮。本季樣區內喬木優勢物種為木麻黃,地被優勢種為大黍,次優勢種是大花咸豐草。本季(114 秋)樣區內開花的植物只有春不老。喬木層監測詳表 2.5.2-6。

表 2.5.2-6 台塑木麻黄造林地樣區喬木監測結果

種類	木麻黄	血桐	巴西胡椒木	台灣海桐	總計
株數	20.0	1.0	6.0	3.0	30.0
斷面積總和(cm²)	13175.1	31.4	415.9	204.6	13826.9
相對密度	66.7	3.3	20.0	10.0	100.0
相對優勢度	95.3	0.2	3.0	1.5	100.0
IVI	162.0	3.6	23.0	11.5	200.0

(七)台塑北門木麻黃混合造林地樣區(Plot IX)

本樣區位於台塑六輕之木麻黃及黃槿混合造林地內,位於風力發電機下方,因鄰近產業道路及海濱,受飛砂影響,樣區內外植物體都覆蓋了明顯的塵沙,樣區內部地勢較低且排水不易,兩季容易因排水不及而造成樣區淹水。本季(114 秋)樣區植物組成主要有小葉桑、木麻黃、血桐、黃槿、臺灣海桐、三角葉西番蓮、雞屎藤、五節芒、大花咸豐草、小花蔓澤蘭、大黍、月橘、密花白飯樹、扛香藤、銀合歡、千金藤及鱗蓋鳳尾蕨。本季樣區內香木優勢物種為黃槿,次優勢種為木麻黃,地被優勢種為大黍、大花咸豐草及三角葉西番蓮。本季(114 秋)樣區內無開花的植物,結果為小葉桑。喬木層監測詳表 2.5.2-7。

表 2.5.2-7 台塑北門木麻黃混合造林地樣區喬木監測結果

種類	小葉桑	木麻黄	血桐	黄槿	臺灣海桐	總計
株數	7.0	9.0	11.0	25.0	1.0	53.0
斷面積總和	430.0	4415.8	646.7	2516.9	27.0	8036.4
相對密度	13.2	17.0	20.8	47.2	1.9	100.0
相對優勢度	5.4	54.9	8.0	31.3	0.3	100.0
IVI	18.6	71.9	28.8	78.5	2.2	200.0

(八) 北海埔新生地樣區

(九) 南海埔新生地樣區

本樣區位置在雲林麥寮海埔新生地上,僅以橋梁做為對外通聯,因有管制,樣區受人為干擾程度相對較低。樣區所在環境空曠,周圍並無其它遮蔽物,所以日照強烈,又受強風吹拂。土壤組成多為石礫和沙子,故較一般土地堅硬。本季(114 秋)樣區植物組成主要有印度田菁、巴拉草、高野黍、大花咸豐草、毛西番蓮、巴西胡椒木、水丁香、馬鞍藤、長穗木及蓮子草。本季樣區內開花結果的植物有大花咸豐草、印度田菁、水丁香及蓮子草。

三、周邊農作物

雲林縣屬農業地區,常見作物除稻米、甘蔗、甘藷外,尚有西瓜、大蒜、大豆、玉米、黄麻等。冬季以收穫區域類型之農地作物白蘿蔔、高麗菜、花生為佔最大面積之農作物,但也有許多休耕的農田。本季調查周邊農作物的調查中發現稻米、玉米、秋葵、甘蔗為主要作物,調查樣區周邊很多農地仍處於休耕。

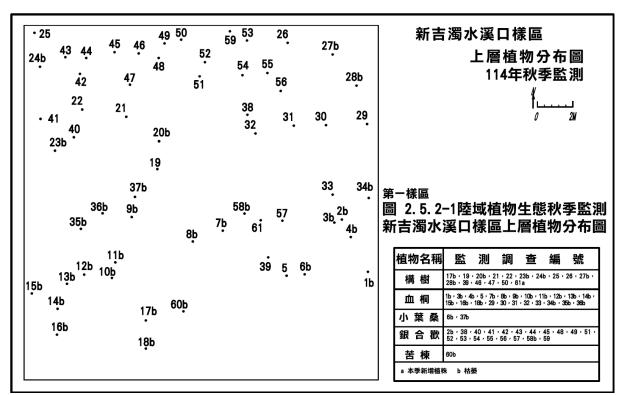


圖 2.5.2-1 陸域植物生態秋季監測新吉濁水溪口樣區上層植物分布圖

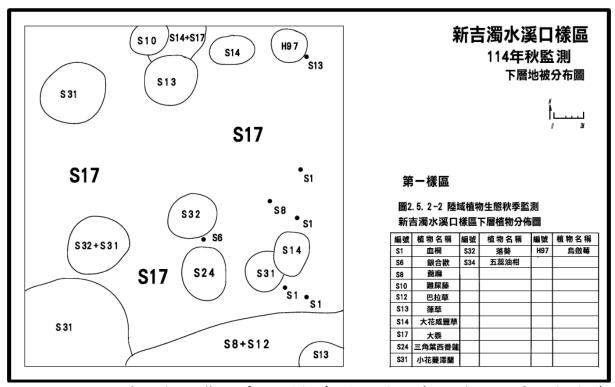


圖 2.5.2-2 陸域植物生態秋季監測新吉濁水溪口魚塭樣區下層植物分布 圖

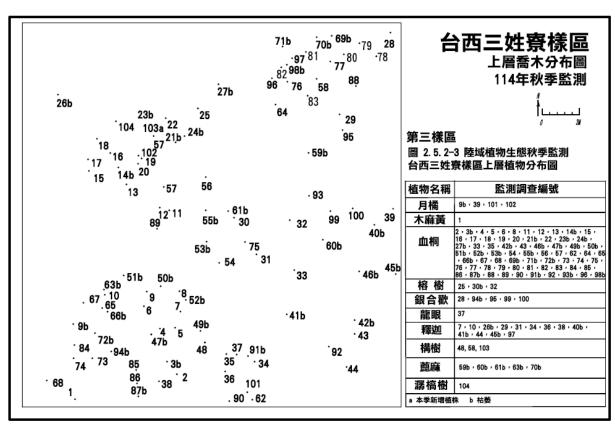


圖 2.5.2-3 陸域植物生態秋季監測台西三姓寮樣區上層植物分布圖

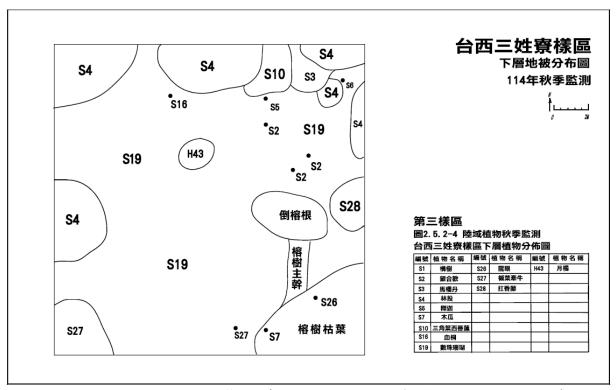


圖 2.5.2-4 陸域植物生態秋季監測台西三姓寮樣區下層植物分布圖

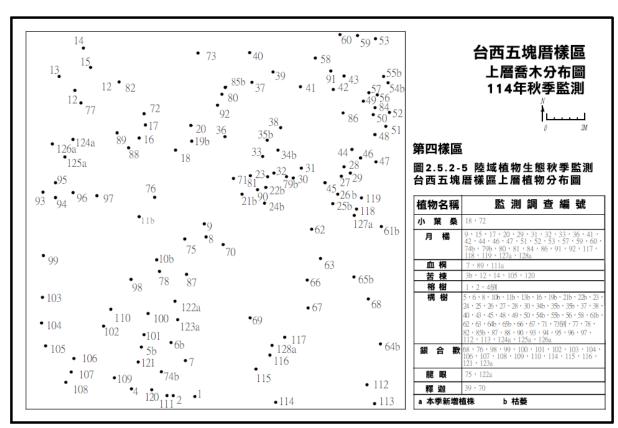


圖 2.5.2-5 陸域植物生態秋季監測台西五塊厝樣區上層植物分布圖

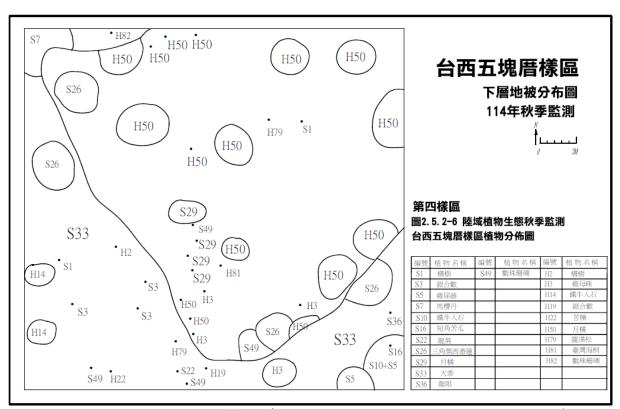


圖 2.5.2-6 陸域植物生態秋季監測台西五塊厝樣區下層植物分布圖

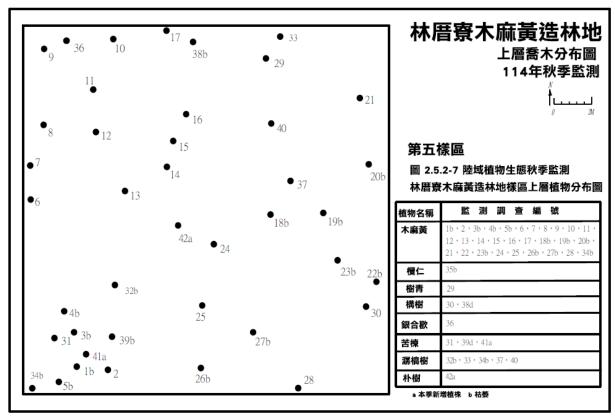


圖 2.5.2-7 陸域植物生態秋季監測林厝寮木麻黃造林地樣區上層植物分 布圖

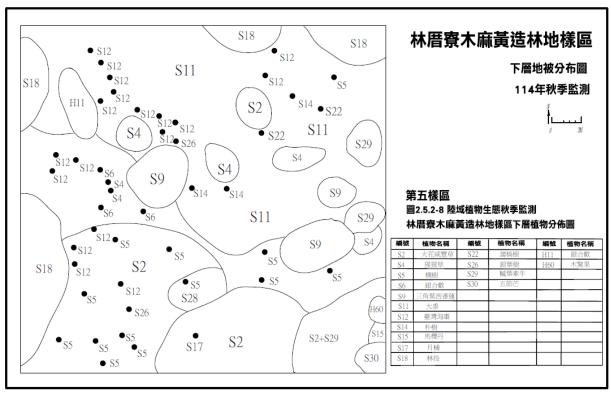


圖 2.5.2-8 陸域植物生態秋季監測林厝寮木麻黃造林地樣區下層植物分 布圖

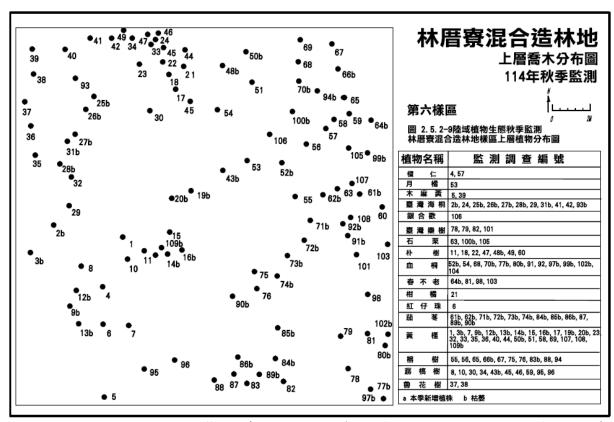


圖 2.5.2-9 陸域植物生態秋季監測林厝寮混合造林地樣區上層喬木分布 圖

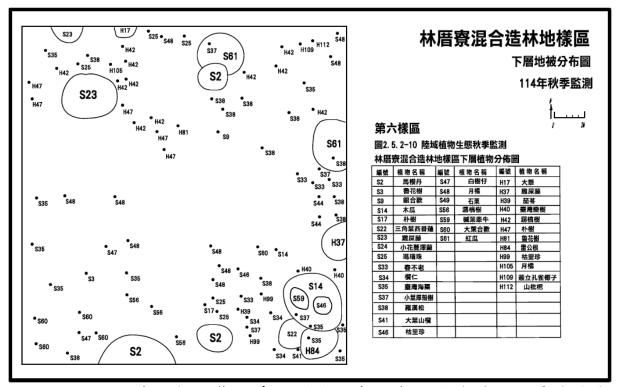


圖 2.5.2-10 陸域植物生態秋季監測林厝寮混合造林地樣區下層地被分 布圖

圖 2.5.2-11 陸域植物生態秋季監測台塑木麻黃造林地樣區上層植物分 布圖

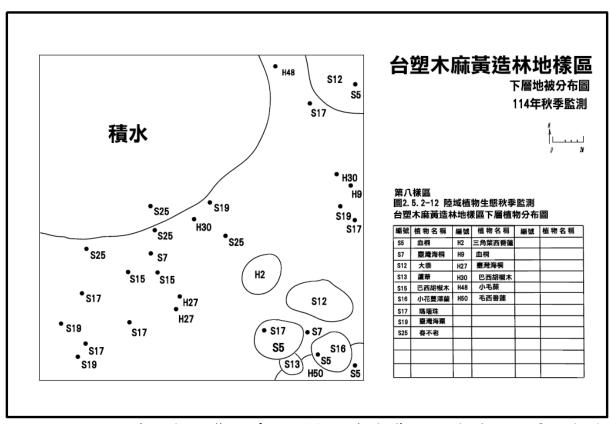


圖 2.5.2-12 陸域植物生態秋季監測台塑木麻黃造林地樣區下層植物分 布圖

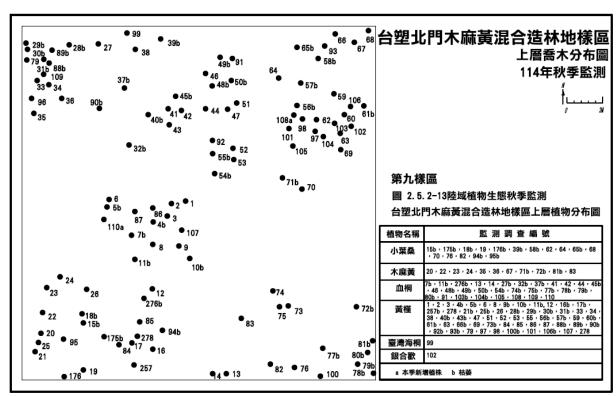


圖 2.5.2-13 陸域植物生態秋季監測台塑北門木麻黃混合造林地樣區上 層植物分布圖

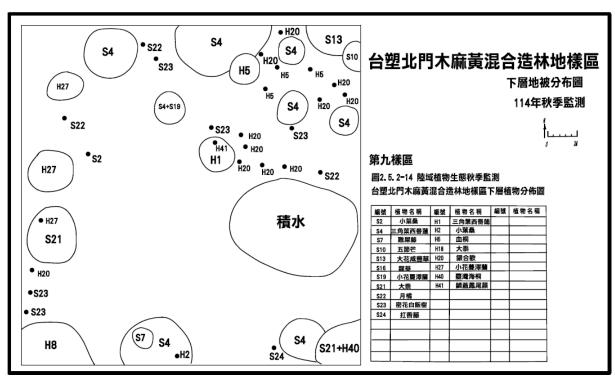


圖 2.5.2-14 陸域植物生態秋季監測台塑北門木麻黃混合造林地樣區下 層植物分布圖

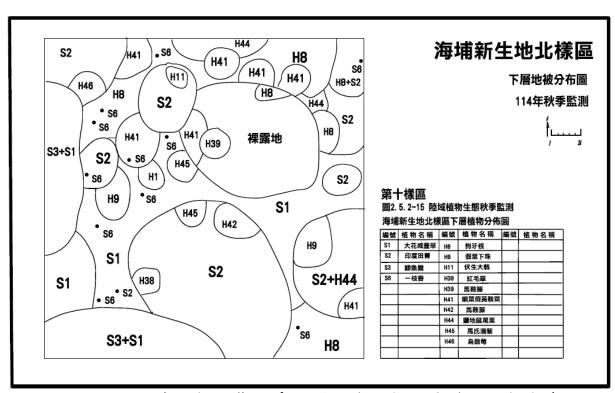


圖 2.5.2-15 陸域植物生態秋季監測北海埔新生地樣區植物分布圖

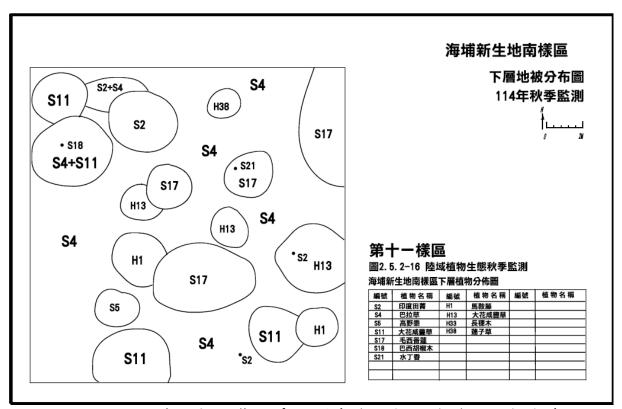


圖 2.5.2-16 陸域植物生態秋季監測南海埔新生地樣區植物分布圖

2.6 地下水水質

2.6.1 本季監測調查結果

本季採樣水質檢驗結果,水樣檢驗數據如表2.6.1-1所示。地下水水質則選取 第二類地下水監測標準與第二類地下水管制標準加以比對。比較結果如表2.6.1-1所示,而各檢測項目分析結果則如下所述:

1.水溫

第二類地下水監測標準及第二類地下水管制標準尚無規範。 SS01、SS02、民 3 及民 4 本季水質檢驗結果為 25.9~31 ℃。

2.pH 值

第二類地下水監測標準及第二類地下水管制標準尚無規範。 SS01、SS02、民3及民4本季水質檢驗結果為6.2~7.9。

3. 導 電 度 (EC)

第二類地下水監測標準及第二類地下水管制標準尚無規範。 $SS01 \times SS02 \times$ 民 3 及民 4 本季水質檢驗結果為 373~39700 μ mho/cm。

4. 濁度(NTU)

第二類地下水監測標準及第二類地下水管制標準尚無規範。 SS01、SS02、民 3 及民 4 本季水質檢驗結果為 0.75~65 NTU。

5. 總溶解固體物(TDS)

第二類地下水監測標準為 1250 mg/L、第二類地下水管制標準尚無規範。SS01、SS02、民 3 及民 4 本年季水質檢驗結果為50~9970 mg/L。其中,SS02 及民 3 超過監測標準。

6. 氟鹽(F-)

第二類地下水監測標準及第二類地下水管制標準分別為 4 mg/L 及 8 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果為 0.05~0.33 mg/L,均符合相關法規標準。

7. 氣 鹽 (Cl⁻)

第二類地下水監測標準為 625 mg/L、第二類地下水管制標準 尚無規範。SS01、SS02、民 3 及民 4 本季水質檢驗結果為 5.1~6020 mg/L。其中,SS02 及民 3 超過監測標準。

8. 總有機碳(TOC)

第二類地下水監測標準為 10 mg/L、第二類地下水管制標準 2-45 尚無規範。SS01、SS02、民 3 及民 4 本季水質檢驗結果為<1~5 mg/L,均符合法規標準。

9.油脂

第二類地下水監測標準及第二類地下水管制標準尚無規範。 SS01、SS02、民 3 及民 4 本季水質檢驗結果皆為<0.5 mg/L,均符合法規標準。

10. 氨氮(NH₃-N)

第二類地下水監測標準規定為 0.25 mg/L、第二類地下水管制標準尚無規範。 SS01、SS02、民 3 及民 4 本季水質檢驗結果為 0.08~2.25 mg/L。其中,SS01、SS02 及民 3 超過監測標準。

11.銅(Cu)

第二類地下水監測標準及第二類地下水管制標準分別為 5mg/L 及 10 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果 ND~<0.003 mg/L,均符合法規標準。

12.鉛(Pb)

第二類地下水監測標準及第二類地下水管制標準分別為 0.05 mg/L 及 0.10 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果均為 ND mg/L,均符合法規標準。

13. 鋅(Zn)

第二類地下水監測標準及第二類地下水管制標準分別為 25 mg/L 及 50 mg/L, SS01、SS02、民 3、民 4 本季水質檢驗結果為 ND ~ 0.038 mg/L, 均符合法規標準。

14.鉻(Cr)

第二類地下水監測標準及第二類地下水管制標準分別為 0.25 mg/L 及 0.50 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果 ND ~ <0.005 mg/L,均符合法規標準。

15. 鎘(Cd)

第二類地下水監測標準及第二類地下水管制標準分別為 0.025 mg/L 及 0.050 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果為皆為 ND,均符合法規標準。

16.砷(As)

第二類地下水監測標準及第二類地下水管制標準分別為 0.25

及 0.50 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果為 ND~0.0189 mg/L, 皆符合法規標準。

17. 鐵(Fe)

第二類地下水監測標準為 1.50 mg/L、第二類地下水管制標準 尚無規範。SS01、SS02、民 3 及民 4 鐵濃度為 0.102~3.35 mg/L。 其中,其中 SS02 及民 3 超過監測標準。

18.鎳(Ni)

第二類地下水監測標準及第二類地下水管制標準分別為 0.5 mg/L 及 1.0 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果為 ND ~<0.011 mg/L,均符合法規標準。

19. **錳**(Mn)

第二類地下水監測標準為 0.25 mg/L、第二類地下水管制標準 尚無規範。SS01、SS02、民 3 及民 4 本季水質檢驗結果分別為 0.012~0.572 mg/L,其中 SS02 及民 3 超過監測標準。

20. 汞(Hg)

第二類地下水監測標準及第二類地下水管制標準分別為 0.01 mg/L 及 0.020 mg/L。SS01、SS02、民 3 及民 4 本季水質檢驗結果皆為 ND mg/L,均符合法規標準。

表 2.6.1-1 本季採樣地下水水質分析數據統計表(114 年 7 月 28、29 日)

	1 1 Mr Mc - 0 1 -	7-7-月 月 77 77 30		1 , /1 =0	<i>27</i> H	,
分析	SS01	SS02	民3	民4	監測	管制
項目					標準	標準
採樣方式	微洗井	微洗井	出水口採水	出水口採 水	*	*
水位深度 (m)	0.010	0.4	-	-	=	=
DO	6.9	3.3	2.7	6.0	=	=
水溫(°C)	31.0	25.9	27.9	30.1	=	=
pH 值	7.2	6.2	7.2	7.9	=	=
導電度 (μmho/cm)	373	39700	3760	1330	=	=
濁度(NTU)	14	14	65	0.75	=	=
總溶解固體 物	50	<u>9970</u>	<u>2970</u>	658	1250	=
氟鹽	0.05	0.33	< 0.05(0.03)	< 0.05(0.04)	4	8
氣鹽	5.1	6020	<u>1670</u>	211	625	=
氨氮	0.09	0.54	2.25	0.08	0.25	=
總有機碳@	1.9	5	<1.0	<1.0	10	=
油脂	< 0.5	< 0.5	< 0.5	< 0.5	=	=
銅	< 0.003(0.001)	ND	ND	ND	5	10
鉛	ND	ND	ND	ND	0.05	0.1
鋅	0.013	0.038	ND	< 0.010(0.006)	25	50
鉻	ND	< 0.005(0.003)	ND	ND	0.25	0.5
鎘	ND	ND	ND	ND	0.025	0.05
砷	ND	0.0143	0.0189	0.0054	0.25	0.5
鐵	0.133	2.27	3.35	0.102	1.5	=
鎳	< 0.005(0.004)	0.011	ND	ND	0.5	1
錳	0.023	0.572	0.432	0.012	0.25	=
汞	ND	ND	ND	ND	0.01	0.02

註1:除pH值無單位外,未標示單位之測項單位為mg/L

註2: "A"表示超過第二類地下水監測標準

註3: "-"表示民3、民4水質採樣為出水口採水,無量測水位深度

註4: "@"表示該檢項委託中環科技事業股份有限公司

2.7 陸域水質

陸域水質為每季一次之採樣(河口水質一同採樣),本季調查日期為 114年09月04、08日,其中蚊港橋測站為新虎尾溪流域屬丙類水體, 而新興橋及西湖橋測站並未訂定水體分類,故3測站以環境部「地面水 體分類水質標準與海域環境分類及品質標準」之最低河川水質標準統一 進行比較,其水質調查結果彙整如表2.7-1,而河川污染程度分類表及陸 域水體分類水質標準請參見表2.7-2及表2.7-3,其水質檢驗結果與採樣 基本資料記錄納入河口水質,列於附錄四-8-表1。

由退潮期間蚊港橋、新興橋及西湖橋等 3 測站之河川水質污染指標 (RPI)計算可知本季之水質污染情形如下:

表 2.7-1 台西、新興區河川水質污染指標(RPI)

河川排水路	新虎尾溪	有才寮大排	舊虎尾溪
項目	蚊港橋	新興橋	西湖橋
DO(mg/L)	5.76	4.65	4.20
BOD(mg/L)	2.90	3.70	3.00
SS(mg/L)	1540	30	716
NH_3 - $N(mg/L)$	2.9	11.9	3.7
	3.0	3.0	6.0
點數	1.0	3.0	1.0
	10.0	3.0	10.0
	6.0	10.0	10.0
平均	5.0	4.8	6.8
二九桂取	中度污染	中度污染	嚴重污染
污染情形	(3.1~6.0)	(3.1~6.0)	(6.0 以上)

以下依上述3測站水質情形分述如後(其中總磷係包括正磷酸鹽、聚 (焦)磷酸鹽及有機磷等物質,正磷酸鹽乃總磷之一部份):

1.新虎尾溪

蚊港橋測站本季監測結果,懸浮固體(丁類)、大腸桿菌群(丙類)與氨氮(丙類)之測值,不符合最低陸域水體分類水質標準,正磷酸鹽高於總磷之標準(乙類),依據河川污染程度分類,此處水體水質呈中度污染。

2.有才寮大排

新興橋測站本季監測結果,大腸桿菌群(丙類)與氨氮(丙類) 之測值不符合最低陸域水體分類水質標準,正磷酸鹽高於總磷之標準(乙類),依據河川污染程度分類,此處水體水質呈中度污染。

3. 舊虎尾溪

西湖橋測站本季監測結果,懸浮固體(丁類)、大腸桿菌群(丙類)與氨氮(丙類)之測值,不符合最低陸域水體分類水質標準,正磷酸鹽高於總磷之標準(乙類),依據河川污染程度分類,此處水體水質呈嚴重污染。

表 2.7-2 本季陸域河川水質監測結果

	1 2.1 2	·			I				
分析項目	河系	最低河川	新虎尾溪	有才寮大排	舊虎尾溪				
가 전 기 기 자 니	單位	水體標準	蚊港橋	新興橋	西湖橋				
рН	-	6.0-9.0	7.564	7.719	7.721				
水溫	°C	-	30.2	31.0	29.7				
導電度	μmho/cm	-	982	1700	1180				
鹽度	psu	-	0.4	0.8	0.5				
濁度	NTU	-	1800	27	600				
溶氧	mg/L	≥2.0	5.76	4.65	4.20				
溶氧飽和度	%	-	77.1	63.7	55.7				
生化需氧量	mg/L	≤10.0	2.9	3.7	3.0				
懸浮固體物	mg/L	<u>≤</u> 100	1540*	29.9	716*				
大腸桿菌群	CFU/100mL	<u>≤</u> 10,000	1.20×10 ^{5*}	1.30×10 ^{5*}	1.50×10 ^{5*}				
氨氮	mg/L	<u><</u> 0.3	2.93*	11.9*	3.67*				
硝酸鹽氮	mg/L	-	1.06	0.66	0.75				
亞硝酸鹽氮	mg/L	-	0.12	0.16	0.10				
正磷酸鹽	mg/L	≤0.05(總磷)	0.202*	1.41*	0.429*				
矽酸鹽	mg/L		8.23	14.8	9.70				
酚類	mg/L	<u><</u> 0.005	ND(0.0017)	< 0.0050	ND(0.0017)				
油脂	mg/L	-	1.5	< 0.5	1.2				
葉綠素a	μg/L	-	0.2	17.5	2.0				
氰化物	mg/L	<u>≤</u> 0.05	ND(0.001)	ND(0.001)	ND(0.001)				
MBAS	mg/L	-	< 0.10	< 0.10	< 0.10				
銅	mg/L	<u><</u> 0.03	0.0114	0.0016	0.0054				
鎘	mg/L	<u>≤</u> 0.005	ND(0.0001)	ND(0.0001)	ND(0.0001)				
鉛	mg/L	<u><</u> 0.01	0.0091	0.0009	0.0056				
鋅	mg/L	<u><</u> 0.5	0.0492	0.0239	0.0440				
鎳	mg/L	<u><</u> 0.1	0.0092	0.0017	0.0045				
鈷	mg/L	-	0.0060	0.0010	0.0025				
鐵	mg/L	-	2.27	0.407	1.11				
鉻	mg/L	≤0.05(六價鉻)	0.006	ND(0.002)	0.003				
砷	mg/L	<u>≤</u> 0.05	0.0050	0.0167	0.0063				
汞	mg/L	<u><</u> 0.001	ND(0.0001)	ND(0.0001)	ND(0.0001)				
污染指	數	-	5.0	4.8	6.8				
污染程		-	中度污染	中度污染	嚴重污染				
註:*丰权温品任河川	註:*表超過最低河川水質標準;"ND"表示檢測數據低於方法偵測極限。								

註:*表超過最低河川水質標準;"ND"表示檢測數據低於方法偵測極限。

表 2.7-3 河川污染程度分類表

污染程度 項目	未受/稍受 污染	輕度污染	中度污染	嚴重污染
DO (mg/L)	6.5以上	4.6~6.5	2.0~4.5	2.0以下
BOD (mg/L)	3.0以下	3.0~4.9	5.0~15	15以上
SS (mg/L)	20以下	20~49	50~100	100以上
NH ₃ -N (mg/L)	0.50以下	0.50~0.99	1.0~3.0	3.0以上
點數	1	3	6	10
積 分	2.0以下	2.0~3.0	3.1~6.0	6.0以上

說明:(1)表內之積分數為 DO、BOD、SS 及 NH3-N 點數之平均值。

(2) DO、BOD、SS 及 NH₃-N 均採平均值。

資料來源:台灣河川水質年報。

表 2.7-4 地面水體分類水質標準與海域環境分類及品質標準-環境基準表

地面水體分類及水質標準:環境部(原環保署)106.09.13,環署水字第1060071140號 令

海域環境分類及海洋環境品質標準:環境部(原環保署)107.02.13,環署水字第1070012375號令

修正「海域環境分類及海洋環境品質標準」:海洋委員會 113.04.25,海保字第1130004128號 令

水體分类	頁基準值 ⁽¹⁾	甲	類	乙	類	丙	類	丁類	戊類	
水質項E	1	河川 湖泊	海域	河川 湖泊	海域	河川 湖泊	海域	河川 湖泊	河川 湖泊	
用途說明	月*	適用於一級 2 泳、乙、丙、	、共用水、游 丁及戊類	適用於二級2 一級水產用2 及戊類				適用於灌溉用 水、二級工業 用水及環境保 育		
保護生活	舌環境相關環境基準									
pH 值		6.5-8.5	7.6-8.5	6.5-9.0	7.5-8.5	6.5-9.0	7.0-8.5	6.0-9.0	6.0-9.0	
溶氧量	24 or	≥6.5 ≤50	≥5.0	<u>≥</u> 5.5	≥5.0	<u>≥</u> 4.5	≥2.0	≥3.0	≥2.0	
大腸桿 生化需			≤1,000	≤5,000	≤30,000	≤10,000 ≤4.0			 ≤10.0	
		≤1.0	≤2	≤2.0	≤3	<u><</u> 4.0	<u><</u> 6	≤8.0	<u>≤10.0</u> 無飄浮物	
懸浮固	體	≤25		≤25		<u>≤</u> 40		≤100	且無油脂	
氨氮		<u>≤</u> 0.1	<u>≤</u> 0.30	<u>≤</u> 0.3	<u>≤</u> 0.50	≤0.3				
總磷礦物性	治 昨	<u>≤</u> 0.02	<u>≤</u> 0.05 <2.0	≤0.05	<u><</u> 0.08 <2.0					
			_	1	_					
水	質 項 目 	保護	人體健康相關		<u>/</u> L)	保護		洋環境品質標準	-(μ g/L)	
	鍋 鉛		≥0.0					≤5.0 ≤10.0		
4			<u>≤</u> 0. <u>≤</u> 0.							
重	鉻(六價) 砷		<u>≤</u> 0. <u>≤</u> 0.	05 05		≤50 ≤50.0				
金	~T 汞		<u>≤</u> 0.0	001			<u> </u>			
	硒		<u>≤</u> 0.			≤1.0 ≤10.0				
屬	銅		<0.	03		≤30.0				
	鋅		<u><0</u>			≤30				
	錳		≤0.	05	5		<u>≤</u>	≤50.0 ≤10		
	銀		<u>≤</u> 0.	05						
los*			<u><0</u>							
揮發	四氟化碳 1,2-二氟乙烷		<u>≤</u> 0.0 ≤0.			≤10.0				
性	1,2-一 梨 乙 炕 二 氯 甲 烷		<u>≤</u> 0. ≤0.	02		<u>≤</u> 20.0				
有	甲苯		<0	.7				<u>≤</u> 700		
機	1,1,1-三氯乙烷		≤	1				1000		
物	三氯乙烯		<u>≤</u> 0.			≤10.0				
	苯		<u>≤</u> 0.			≤10.0				
其他物	氰化物		<u>≤</u> 0.			≤10				
質	的		≤0.0)05				<u><5</u>		
有機磷劑及氣基甲酸鹽之總 量 ⁽²⁾				.1		≤100.0				
	安特靈		<u>≤</u> 0.0				<u>≤</u>	0.020		
農	蜜 丹			.004				<u><</u> 4.0		
	毒殺芬		<u>≤</u> 0.0				:	<5.0 -2.0		
	安殺番 飛佈達及其衍生物	≤0.003					≤3.0			
	(Heptachlor, Heptachlor epoxide) 滴滴涕及其衍生物		<u><</u> 0.0			≤1.0				
ph.	(DDT, DDD, DDE)		≥0.0			≤1.0				
藥	阿特靈、地特靈 五氣酚及其鹽類		≤0.003 ≤0.005				≤3.0 ≤5.0			
	(3)									
I	除草劑	≤0.1					<u> </u>	100.0		

1.保護人體健康相關環境基準值係以對人體具有危害之物質,具體標示其基準值。2.基準值以最大容許量表示。3.全部公共水域一律適用。4.其他有 害水質之農藥,其容許量由中央主管機關增訂公告之。

附註:

(1)各水質項目之單位: pH 值無單位,大腸桿菌群類 $CFU / 100 \, mL$,保護人體健康相關環境基準單位:毫克/公升,保護人體健康之海洋環境品質標準 單位:微克/公升。

(2)有機磷質係指巴拉松、大利松、達馬松、亞素靈、一品松,氨基甲酸鹽係指滅必蝨、加保扶、納乃得之總量。

(3)除草劑係指丁基拉草、巴拉刈、2,4-地之總量。

用途說明*

- 一級公共用水:指經消毒處理即可供公共給水之水源。
- 二級公共用水:指需經混凝、沈澱、過濾、消毒等一般通用之淨水方法處理可供公共給水之水源。
- 三級公共用水:指煙活性碳吸附,離子交換、逆滲透等特殊或高度處理可供公共給水之水源。 一級水產用水:在陸域地面水體,指可供鱘魚、香魚及鱸魚培養用水之水源;在海域水體,指可供嘉臘魚及紫菜類培養用水之水源。
- 二級水產用水:在陸域地面水體,指可供鱸魚、草魚及貝類培養用水之水源;在海域水體,指可供虱目魚、烏魚、龍鬚菜及其他食用海藻培養用水之水源。
- 一級工業用水:指可供製造用水之水源。
- 二級工業用水:指可供冷卻用水之水源。

2.8 河口水質

本季新興區附近河口水質為每季一次之退潮期間採樣,其水質檢驗 結果與採樣基本資料記錄同樣列於**附錄四-8-表1**。

為方便討論同一河川相對上下游之水質變動,因此將陸域河川至河口測站之調查結果合併分析,以下就本季之河川下游至河口水質採樣分析結果作討論:

1.台西、新興區水質

鄰近新興區之河川水質(含河口)測點,包括新虎尾溪—蚊港橋、 蚊港橋下游;有才寮排水—新興橋、夢麟橋;以及舊虎尾溪—西湖橋、 西湖橋下游等三條河川共6處測站。本季調查結果說明如下:

(1)pH 值

本季 pH 漲潮時介於 7.605~8.098,平均 7.801;退潮時介於 7.564~7.894,平均 7.724,落於歷次變動範圍內,符合地面水最低容許範圍(6.0~9.0)。

(2)水溫

水溫未設定標準,隨季節變動,與歷次相比無異常。本季漲潮時介於 27.8~31.5~ \mathbb{C} ,平均 30.3~ \mathbb{C} ;退潮時介於 33.3~29.7~ \mathbb{C} ,平均 30.9~ \mathbb{C} 。

(3) 導電度

導電度隨海水漲、退潮時混合比例而變化較大,無標準。本季漲潮時介於 $1210\sim48300~\mu~mho/cm$,平均 $26925~\mu~mho/cm$,以蚊港橋測站的導電度濃度最低,西湖橋下游測站之導電度最高;退潮時介於 $982\sim37900~\mu~mho/cm$,平均 $8167~\mu~mho/cm$,以蚊港橋測站之導電度濃度最低,而蚊港橋下游導電度濃度最高。

(4)鹽度

鹽度同導電度,與歷次相比無異常。本季漲潮時介於 0.6~31.8 psu,平均 17.2 psu,以西湖橋下游鹽度含量最高,蚊港 橋鹽度最低;退潮時介於 0.4~24.4 psu,平均 5.0 psu,以蚊港橋 下游鹽度含量最高,而蚊港橋鹽度含量最低。

(5)濁度

濁度未設定標準,本季漲潮時介於 20~50 NTU,平均 37 NTU;退潮時介於 16~1800 NTU,平均 537 NTU,本季漲潮時以西湖橋與西湖橋下游混濁程度最高為 50 NTU,退潮時蚊港橋之混濁程度最高為 1800 NTU。

(6)懸浮固體物

本季懸浮固體物濃度漲潮時介 14.2~66.4 mg/L,平均 40.0 mg/L,漲潮除蚊所有測點皆符合地面水最大容許上限值(≦100 mg/L);退潮時介於 19.4~1540 mg/L,平均 509 mg/L,退潮時蚊港橋、西湖橋與西湖橋下游測點不符合標準,其餘測點皆符合地面水最大容許上限值。

(7)生化需氧量

生化需氧量漲潮時介於<2.0~6.2~mg/L,平均 2.9~mg/L,本季漲潮時所有測點皆符合陸域水體戊類水質標準($\leq 10~mg/L$);退潮時介於 2.4~4.0~mg/L,平均 3.2~mg/L,退潮時所有測點皆符合陸域水體戊類水質標準。

(8)大腸桿菌群

大腸桿菌群漲潮時介於 $8.5\times10^2\sim3.2\times10^4$ CFU/100 mL, 平均 1.7×10^4 CFU/100 mL, 本季漲潮時,除夢麟橋與西湖橋下游外,其餘測點皆高於丙類陸域水質標準($\leq 10,000$ CFU/100 mL);退潮時介於 $1.3\times10^2\sim1.5\times10^5$ CFU/100 mL, 平均 9.1×10^4 CFU/100 mL,除蚊港橋下游測點外,其餘測點皆不符合標準,以西湖橋最高測值為 1.5×10^5 CFU/100 mL,研判近岸河口之有機性污染嚴重,應與陸源都市家庭生活污水與畜牧廢水中耗氧性污染物輸入有相當程度之關連。

(9)溶氧

溶氧漲潮時介於 $3.86\sim5.63$ mg/L, 平均 4.65 mg/L, 本季漲潮所有測點溶氧測值皆符合地面水體最低容許下限值(≥2.0 mg/L); 退潮時介於 $4.17\sim6.69$ mg/L, 平均 4.96 mg/L, 本季退潮所有測點溶氧測值皆符合標準。

(10) 氨氮

漲潮時介於 0.12~5.40 mg/L, 平均 2.41 mg/L, 除西湖橋下游測點外,

其餘測點測值皆不符合陸域水質標準($\leq 0.3 \text{ mg/L}$),而新興橋氨氮濃度最高為 5.40 mg/L;退潮時介 $2.93 \sim 11.9 \text{ mg/L}$,平均 6.32 mg/L,所有測點的氨氮濃度皆不符合陸域水質標準,新興橋氨氮濃度最高為 11.9 mg/L。推測為陸源畜牧廢水與都市家庭污水排入,造成河川水體氮磷類營養鹽負荷高,導致鄰近之潮間帶測點水質氨氮濃度偏高。

(11)硝酸鹽氮

硝酸鹽氮未設定標準。漲潮時介於 0.04~1.29~mg/L,平均 0.54~mg/L;退潮時介於 0.41~1.06~mg/L,平均 0.69~mg/L,以蚊港橋濃度最高為 1.06~mg/L。

(12)亞硝酸鹽氮

亞 硝 酸 鹽 氮 未 設 定 標 準 , 與 歷 次 相 比 無 異 常 。 漲 潮 時 介 於 <0.01~0.12~mg/L,平均 0.08~mg/L; 退 潮 時 介 於 0.07~0.16~mg/L, 平均 0.12~mg/L, 以 新 興 橋 與 夢 麟 濃 度 最 高 為 0.16~mg/L。

(13)正磷酸鹽

正磷酸鹽測值漲潮時介於 $0.031\sim0.829~mg/L$,平均 0.371~mg/L;退潮時介於 $0.202\sim1.45~mg/L$,平均 0.676~mg/L。本季漲、退潮,除漲潮時西湖橋下游外,其餘測點均不符合陸域水質標準($\leq 0.05~mg/L$ 總磷係包括正磷酸鹽、聚(焦)磷酸鹽及有機磷等物質,正磷酸鹽乃總磷其中之一部份),尤其是退潮時夢麟橋正磷酸鹽濃度為最高,達 1.45~mg/L。

(14)矽酸鹽

矽酸鹽未設定標準,漲潮時介於 0.31~7.20~mg/L,平均 4.17~mg/L;退潮時介於 1.74~14.8~mg/L,平均 9.15~mg/L,且漲潮時以較港橋濃度最高為 7.20~mg/L;退潮時以新興橋濃度最高達 14.8~mg/L。

(15)酚類

國內地面水酚類之標準為 ≤ 0.005 mg/L,本季漲潮時介於<0.0050~0.0050 mg/L,平均 0.0050 mg/L,所有測點皆符合標準;退潮時介於 ND<0.0017~<0.0050mg/L,平均 0.0028 mg/L,本季退潮所有測點測值皆符合標準。

(16)油脂

總油脂(含動物性及礦物性油脂)於漲潮介於<0.5~1.6 mg/L,平均 0.9

mg/L; 退潮總油脂介於<0.5~1.5 mg/L, 平均 1.0 mg/L。

(17)重金屬

a.銅

保護人體健康相關環境水質基準規定銅含量須低於 0.03 mg/L,本季重金屬銅含量於漲潮時介於 0.0007~0.0023 mg/L,平均 0.0015 mg/L;退潮時介於 0.0012~0.0114 mg/L,平均 0.0048 mg/L。本季漲、退潮時,各樣點銅含量均落於國內環境基準值標準範圍內,亦符合美國海洋大氣總署(NOAA)之銅立即毒性影響值(0.013 mg/L)之情形。

b.鎘

編與歷次相比無異常。本季漲、退潮時重金屬編含量各樣點測值皆為 ND<0.0001 mg/L。本季漲、退潮時各樣點編含量均符合國內環境基準值規定編含量須低於 0.005 mg/L 之標準,且各樣點編濃度亦符合美國 NOAA 淡水水質編容許濃度需低於 0.002 mg/L(立即毒性影響值)之規定。

c.鉛

鉛漲潮時介於< $0.0006\sim0.0026$ mg/L,平均 0.0016 mg/L;退潮時介於 $0.0007\sim0.0091$ mg/L,平均 0.0043 mg/L,漲、退潮時,全部樣點符合國內環境基準值鉛含量不得高於 0.01 mg/L 之要求,亦符合美國NOAA 淡水水質鉛容許濃度需低於 0.065 mg/L(立即毒性影響值)之規範。

d.鋅

鋅退潮時平均高於漲潮時,漲潮時介於 $0.0094\sim0.0212~mg/L$,平均 0.0136~mg/L;退潮時介於 $0.0103\sim0.0492~mg/L$,平均 0.0304~mg/L,本 季漲、退潮各樣點皆符合國內環境基準值標準($\leq 0.5~mg/L$)。

e.總鉻

鉻(包含三價鉻+六價鉻)在本季漲潮時各測站之總鉻濃度皆為 ND<0.002 mg/L;退潮時介於 ND<0.002~0.006 mg/L,平均 0.003 mg/L, 漲、退潮之各測點均低於六價鉻標準(≤ 0.05 mg/L),與歷次相比無異常。 f.砷

砷與歷次相比無異常。本季漲潮時介於 0.0015~0.0154 mg/L,平均

0.0065~mg/L;退潮時介於 $0.0050\sim0.0167~mg/L$,平均 0.092~mg/L,漲、退潮時,各樣點砷含量均符合保護人體健康相關環境水質標準($\leq 0.05~mg/L$),亦符合美國 NOAA 淡水水質砷容許濃度需低於 0.34~mg/L(立即毒性影響值)之規範。

g.汞

汞與歷次相比無異常,本季漲潮皆為 ND<0.0001 mg/L;退潮皆為 ND<0.0001 mg/L,除符合國內保護人體健康相關環境水質標準(≤ 0.001 mg/L),亦符合美國 NOAA 淡水水質汞容許濃度需低於 0.0014 mg/L (立即毒性影響值)之規定。

h.鐵

鐵未設定標準,與歷次相比無異常。漲潮時介於 $0.0773\sim0.439~mg/L$,平均 0.283~mg/L;退潮測值介於 $0.407\sim2.27~mg/L$,平均 1.08~mg/L。

i. 鈷

銛未設定國內標準,本季漲潮時各測站之數值為 $0.0005\sim0.0006$ mg/L ,平均 0.0006 mg/L ,整體變動範圍小;而退潮測值介於 $0.0006\sim0.0060$ mg/L ,平均 0.0023 mg/L ,漲、退潮皆符合美國 NOAA 篩選速查表列淡水水質銛容許濃度需低於 1.5 mg/L(立即毒性影響值)之規定。

j.鎳

鎮退潮時平均高於漲潮時,漲潮時介於 $0.0010\sim0.0019~mg/L$,平均 0.0016~mg/L;退潮時介於 $0.0013\sim0.0092~mg/L$,平均 0.0040~mg/L,漲、退潮時皆符合符合國內保護人體健康相關環境水質標準($\leq 0.1~mg/L$),及美國 NOAA 淡水水質鎳容許濃度需低於 0.47~mg/L(立即毒性影響值) 之規定。

(18) 氰化物

國內氰化物標準訂為 $\le 0.05 \text{ mg/L}$ 。本季漲潮時皆為 ND<0.001 mg/L,退潮時皆為 ND<0.001 mg/L,本季全數測站之氰化物濃度皆符合河川標準,與歷次相比無異常。

(19)陰離子介面活性劑

陰離子介面活性劑未設定標準,漲潮介於<0.10~0.11 mg/L,平均0.10 mg/L;退潮時皆為<0.10 mg/L,各樣點均落於歷次變動範圍內,無

明顯異常。

(20)葉綠素 a

葉綠素 a 未設定標準,漲潮時介於 $5.7\sim15.7~\mu g/L$,平均 $10.3~\mu g/L$, 以夢麟橋葉綠素 a 濃度最高為 $15.7~\mu g/L$;退潮時介於 $0.2\sim17.5~\mu g/L$, 平均 $8.4~\mu g/L$,以新興橋葉綠素 a 濃度最高為 $17.5~\mu g/L$ 。

新虎尾溪、有才察及舊虎尾溪水質,於 114 年第 3 季(7~9 月)漲、退潮時,仍多以生化需氧量、大腸桿菌群、氨氮、正磷酸鹽磷濃度最常不符合標準,與上年度(113 年)監測相較,有機污染情形仍未見顯著改善。本季新虎尾溪與舊虎尾溪退潮期水中懸浮固體於有不符合標準情形。而水質重金屬方面,由本季監測結果顯示,鄰近新興區之河川水質(含河口)測點之重金屬含量的數值皆落於國內環境基準值標準範圍內且多數符合美國 NOAA 淡水水質無機重金屬容許濃度之相關規定。由圖 2.8-1(a)~(d)雲林沿海水質狀態之空間變化趨勢研判,雲林縣轄內環境水質,整體以退潮時近岸河川與河口區水質污染最為嚴重,潮間帶區居次,而海域水質相對較佳,另依據 114 年 10 月查詢環境部「列管污染源資料查詢系統」於雲林縣麥寮鄉轄內重點水污染列管廠家之資料顯示,麥寮鄉範圍 10 公里,水污染事業計有 74 家畜牧業(圖 2.8-2),推測大宗陸源畜牧廢水與都市家庭廢水輸入也使得雲林縣轄內內陸河川受到一定程度的污染。此外,新興區造地施工已暫停多時,應不致產生與排放如上述等污染源,推測河口污染源應主要源自陸源性污染,而與近岸之本產業園區施工營運較無直接關連。

雲林縣境內放流水大致仍以農畜業、養殖業與家庭廢水為大宗。根據農業部畜牧業農情調查結果顯示,雲林縣畜產總產值居於全台之冠,114 年 5 月養豬頭數調查報告書指出,雲林縣養豬頭數高達 1,514,686 頭,占全台養豬總頭數(5,057,690)之 1/4 (29.95%),由於豬係雜食性動物,排泄量約為人類 3~4 倍,根據台灣養豬科學研究所統計指出,以 60 公斤豬隻而言,其污染量每日可達COD 400 g ,SS 200g,此等畜牧廢水若未經妥善處理而逕自排入河川,易造成水體品質不良與惡化。因此由歷年麥寮及新興區河口調查結果顯示,區域內的有才寮大排與舊虎尾溪,受到來自陸源不同程度污染,大多以生化需氧量、氨與磷等有機污染指標最常不符合陸域水體之最高容許上限,且污染濃度相對高於彰雲沿海其他區域,河川污染程度指數(River Pollution Index, RPI)呈現嚴重污染。目前雲林縣政府為打造一個綠色基盤的農業首都,乃積極推動河川水

質改善、畜牧廢水農地施肥與沼氣發電政策,希冀能有效改善轄內新虎尾溪等水質污染嚴重之河川流域品質。

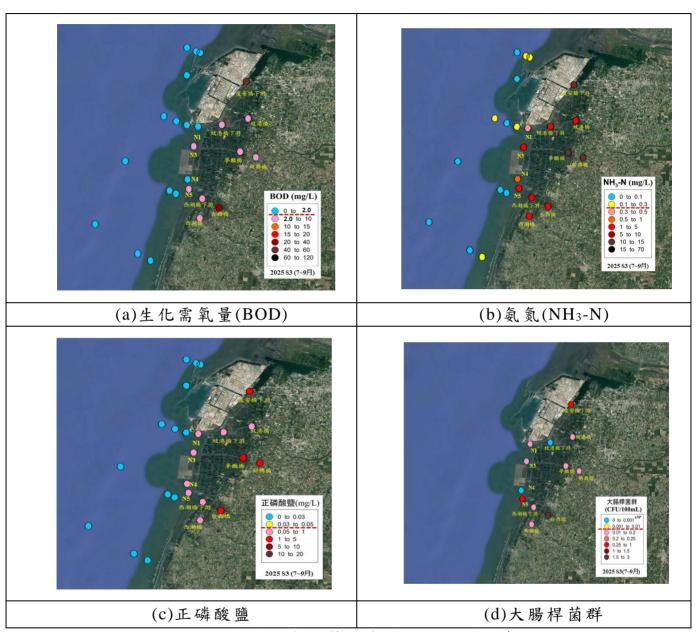


圖 2.8-1 雲林沿海水質污染特性之空間分布

圖 2.8-2 雲林縣麥寮鄉轄內重點水污染列管之資料

2.9 海域水質

2.9.1 水質部份

1.海域斷面

本季海域斷面水質調查結果,詳見**附錄四-8-表 2**。以下就本季各項水質監測結果分述如下:

(1)pH 值

海域斷面 pH 介於 8.088~8.211,平均 8.176,整體酸鹼值略呈現弱鹼性,各樣點均落於甲類海域水質標準(7.6~8.5)範圍內。

(2)水溫

水溫未設定標準,海域斷面介於 29.1~30.1 ℃,平均 29.6 ℃,溫度之空間分佈受離岸距離影響不大,上層水溫主要受日週期變動影響。

(3)導電度及鹽度

導電度未設定標準,海域斷面介於 479000~49800 μmho/cm, 平均 49131 μmho/cm,與歷次相比無異常。

海域鹽度介於 31.4~32.8 psu,平均 32.3 psu,空間變化具均 匀性,整體變動落於歷次範圍內,無明顯異常。

(4)溶氧

海域溶氧介於 6.39~7.72 mg/L, 平均 6.78 mg/L, 各樣點均符合甲類海域水質標準溶氧量不得低於 5.0 mg/L 之標準。

(5)生化需氧量

生化需氧量全數< 2.0 mg/L, 各樣點均落於甲類海域標準(≦ 2.0 mg/L)範圍內,與歷次相比無異常。

(6)懸浮固體、濁度、透明度

懸浮固體物未設定標準,海域斷面介於 4.0~14.0 mg/L,平均 6.5 mg/L,各樣點懸浮質濃度無明顯異常。

濁度未設定標準,海域斷面介於 2.2~8.5 NTU,平均 4.0 NTU,整體變動範圍小,空間變化無特定分佈趨勢。

透明度未設定標準,海域斷面介於127~325 cm,平均208 cm,以SEC 11-20 上層水透視度最高,水質相對清澈。

(7)大腸桿菌群

大腸桿菌群本季無檢測。

(8) 氨氮、硝酸鹽氮、亞硝酸鹽氮與正磷酸鹽及矽酸鹽

氨氮測值介於 ND<0.02~0.17 mg/L, 平均 0.08 mg/L, 符合甲類海域標準(≤ 0.30 mg/L)。

硝酸鹽氮未設定標準,本季海域斷面各測站之測點數值介於<0.03~0.06 mg/L,平均 0.04 mg/L,各樣點濃度無明顯地域性分佈,與歷次相比無異常。

亞硝酸鹽氮未設定標準,本季海域斷面各測站之測點介於<0.01~0.02 mg/L,平均 0.01 mg/L 與歷次相比無異常。

磷元素為微生物生長的限制元素,因此,藉由磷含量的變化亦可瞭解水體營養源的分布特性。本季海域斷面正磷酸鹽(總磷係包括正磷酸鹽、聚(焦)磷酸鹽及有機磷等物質,正磷酸鹽乃總磷其中之一部份),本季海域斷面測值介於 $<0.010\sim0.019$ mg/L,平均 0.012 mg/L,本季全數測站的正磷酸鹽濃度均符合甲類海域標準(≤0.05 mg/L)。

矽酸鹽未設定標準,海域斷面介於 0.092~0.357 mg/L,平均 0.208 mg/L,與歷次相比無異常。

(9)酚類與油脂

酚類國內標準為 ≤ 0.005 mg/L,海域斷面酚類測值介於ND<0.0017 mg/L,所有測點皆符合標準。

油脂本季無檢測。

(10)葉綠素 a

葉綠素 a 未設定標準,海域斷面介於 $0.9~5.3~\mu g/L$,平均 $2.2~\mu g/L$,與歷次相比無異常。

(11)重金屬:銅、鍋、鉛、鋅、鉻、汞、砷、鐵、鈷、鎳

a.銅

依據國內「保護人體健康之海洋環境品質標準」規定,銅濃度須低於 0.030 mg/L,本季海域斷面銅濃度介於<0.0006~0.0007 mg/L,平均 0.0006 mg/L,各樣點監測結果皆符合國內環境水質

基準與美國海洋大氣總署(NOAA)銅容許濃度不得大於 0.0048 mg/L 之規定。

b.鎘

國內「保護人體健康之海洋環境品質標準」規定,鎘含量須低於 0.0050 mg/L, 而美國海洋大氣總署(NOAA)則規範,海洋水質 鎘容許濃度標準需在 0.0088 mg/L(慢性長遠影響值)~0.04 mg/L (立即毒性影響值)範圍內,本季海域斷面各樣點之鎘濃度 濃度皆為 ND<0.0001,符合標準與歷次相比無異常。

c.鉛

國內「保護人體健康之海洋環境品質標準 30」規定,鉛含量不得高於 0.01 mg/L, 另美國海洋大氣總署(NOAA)則規範,海洋水質可容許之鉛濃度標準需在 0.0081 mg/L(慢性長遠影響值)~0.21 mg/L(立即毒性影響值)範圍,本季海域斷面鉛濃度界於ND<0.0002~<0.0006 mg/L, 平均 0.0003 mg/L, 符合標準與歷次相比無異常。

d.鋅

本季海域斷面鋅濃度介於<0.0018~0.0132 mg/L,平均 0.0046 mg/L,各樣點濃度除符合國內「保護人體健康之海洋環境品質標準」0.03 mg/L 以下之規範,亦遠低於美國 NOAA 海洋水質鋅容許濃度(立即毒性影響值: 0.09 mg/L;慢性長遠影響值:0.081 mg/L)標準。

e.鉻

本季海域斷面各測站樣點之鉻濃度皆為 $ND<0.0020\ mg/L$,各樣點均符合國內環境基準值標準($\le 0.05\ mg/L$),亦遠低於美國 NOAA 海洋水質六價鉻容許濃度(立即毒性影響值:1.1mg/L;慢性長遠影響值: $0.05\ mg/L$)之規範。

f.砷

國內「保護人體健康之海洋環境品質標準」規定,砷水質基準為 0.05 mg/L, 另美國海洋大氣總署(NOAA)規範,海洋水質砷容許濃度標準需在 0.036 mg/L(慢性長遠影響值)~0.069 mg/L(立即 毒性影響值)範圍內,本季海域斷面砷濃度介於<0.0012~0.0093 mg/L,平均 0.0018 mg/L,與歷次相比無異常,

皆符合標準與歷次相比無異常。

g.汞

本季各海域斷面重金屬汞濃度皆為 ND<0.0001 mg/L,各樣點監測結果均符合國內環境基準值標準(≦0.001 mg/L),亦符合美國 NOAA 篩選速查表列海洋水質汞容許濃度(立即毒性影響值:0.0018 mg/L;慢性長遠影響值:0.00094 mg/L)相關規範。

h.鐵、鈷、鎳

國內海域水質鐵濃度未設定標準,本季海域斷面鐵濃度介於 0.0115~0.0444 mg/L,平均 0.0299 mg/L,與歷次相比無異常。 鈷 與歷次相比無異常。

本季海域斷面銛濃度介於 ND<0.0001~<0.0003 mg/L,平均 0.0002 mg/L,整體變動範圍小,與歷次相比無異常。

本季鎳濃度介於 ND< $0.0002\sim<0.0006$ mg/L,平均 0.0005 mg/L 各樣點監測結果均符合國內環境基準值標準(≤ 0.05 mg/L),以美國 NOAA 標準檢視,本季監測結果均符合美國 NOAA 篩選速查表列海洋水質鎳容許濃度(立即毒性影響值:0.074 mg/L;慢性長遠影響值:0.0082 mg/L)之規範。

(12)總有機碳

總有機碳本季無檢測。

(13)氰化物

氰化物本季無檢測。

本季各海域樣點之酸鹼度均落於甲類海域水質標準(7.6~8.5)範圍內。而於水體渾濁方面,各樣點懸浮質濃度普遍偏低,水質清澈良好。至於海水營養鹽濃度,則無明顯地域性分佈,整體變動範圍小。重金屬方面,本季各樣點之金屬濃度(銅、鍋、鉛、鋅、鉻、汞、砷、鐵、鈷、鎳)在空間分佈上皆具均勻性,無顯著變化差異,皆符合美國NOAA 相關無機重金屬海域水質容許濃度與國內保護人體健康保護人體健康之海洋環境品質標準,顯示本計畫海域水質現況尚趨穩定。

2.新興區潮間帶區

新興區出海口潮間帶區設四測站(N1:新虎尾溪出海口、N3:有才寮出海口、N4:台西水閘、N5:舊虎尾溪出海口)。本區域出海口潮間

帶屬河川、區域排水出海口之潮間帶,符合海域環境分類及海洋環境品質標準第8條,「海域水體內之河川、區域排水出海口或廢水管線排放口出口半徑二公里之範圍內之水體得列為次一級之水體」規定, 監測結果仍依甲類海域水質做參考比較,但部分檢項(生化需氧量、 氨氮、正磷酸鹽、大腸桿菌群等)則納入乙類海域水質標準進行討論。 本季潮間帶調查結果列於附錄四-8-表 3,說明如下:

(1)pH

pH 漲潮時平均高於退潮時,漲潮時介於 8.037~8.170,平均為 8.105,退潮時介於 7.604~7.969,平均 7.828,各測站均落於甲類海域水質標準範圍內(pH 7.6~8.5)。

(2)水溫

水温未設定標準,隨季節變動。漲潮時介於 29.7~30.6°C,平均 30.0°C;退潮時介於 30.9~31.8°C,平均 31.4°C,與歷次相比無異常。

(3) 導電度

導電度無標準,隨河海水漲退潮時混合比例而變化,與歷次相比無異常。漲潮時介於 45700~49000 mmho/cm, 平均 47575 mmho/cm; 退潮時介於 10200~41300 mmho/cm, 平均 28650 mmho/cm, 漲潮時以新虎尾溪出海口N1測站最高,台西水閘N4測站導電度最低;而退潮則是台西水閘N4測站最高,舊虎尾溪出海口N5測站導電度最低。

(4)鹽度

鹽度無標準,與歷次相比無異常。漲潮時介於 29.9~32.3 psu, 平均 31.2 psu;退潮 5.7~26.8 psu,平均 18.1 psu,漲潮時以新虎尾溪出海口 N1 測站最高測站鹽度最高達 32.3 psu,則台西水閘 N4 測站鹽度最低為 29.9 psu;而退潮則是台西水閘 N4 測站鹽度最高 26.8 psu,則舊虎尾溪出海口 N5 測站鹽度最低 5.7 psu。

(5)溶氧

溶氧於漲潮時平均高於退潮時。漲潮時介於 $6.38\sim7.51~mg/L$,平均 6.68~mg/L;退潮時介於 $2.95\sim5.37~mg/L$,平均 4.38~mg/L,本季漲潮所有測站溶氧皆符合甲類與乙類海域水質標準($\geq 5.0~mg/L$),退潮時除台西水閘 N4 測站外,其餘測點溶氧皆不符合乙

類水質標準以舊虎尾溪出海口 N5 測站溶氧最低為 2.95 mg/L。

(6)濁度

濁度未設定標準,漲潮時介於 3.9~19 NTU, 平均 10 NTU, 漲潮時台西水閘 N4 測站濁度最高;退潮時介於 45~310 NTU, 平均 148 NTU, 退潮時有才寮出海口 N3 測站濁度最高。

(7)生化需氧量

本季漲潮生化需氧量漲潮時皆為< $2.0 \, \text{mg/L}$,所有測站皆符合甲類海域水質標準($\leq 2 \, \text{mg/L}$),與符合乙類海域水質標準($\leq 3 \, \text{mg/L}$);退潮時介於< $2.0 \sim 3.4 \, \text{mg/L}$,平均 $2.6 \, \text{mg/L}$,除有才寮出海口 N3 與舊虎尾溪出海口 N5 測站外,其餘測站皆符合甲類海域水質標準,除舊虎尾溪出海口 N5 測站外,其餘測站皆乙類海域水質標準。

(8)懸浮固體物

懸浮固體物未設定標準,漲潮時介於 4.8~23.9 mg/L,平均 14.5 mg/L;退潮時介於 61.2~344 mg/L,平均 174 mg/L。漲潮時舊虎尾溪出海口 N5 測點懸浮固體物濃度最高 23.9 mg/L,則新虎尾溪出海口 N1 測站之懸浮固體物濃度最低為 4.8 mg/L;而退潮時以有才寮出海口 N3 之懸浮固體物濃度最高達 344 mg/L,則台西水閘 N4 之懸浮固體物濃度為最低 61.2 mg/L。

(9)大腸桿菌群

本季大腸桿菌群漲潮時介於 $15\sim6.1\times10^3$ CFU/100 mL,平均 1.6×10^3 CFU/100 mL;退潮時介於 $1.4\times10^2\sim4.5\times10^5$ CFU/100 mL,平均 1.5×10^5 CFU/100 mL,本季漲潮時除舊虎尾溪出海口 N5 外,其餘測站大腸桿菌皆符合甲類海域水質標準($\leq 1,000$ CFU/100 mL),與乙類海域水質標準($\leq 30,000$ CFU/100 mL)。退潮除台西水閘 N4 測點外,其餘測站大腸桿菌不符合甲類水質標準,除新虎尾溪出海口 N1 與台西水閘 N4 測點外,其餘測站大腸桿菌不符合乙類水質標準,以舊虎尾溪出海口 N5 測值最高為 4.5×10^5 CFU/100 mL。

(10)氨氮

氨氮海域水質退潮時平均高於漲潮時,本季漲潮濃度介於 $0.07\sim0.50~mg/L$,平均 0.26~mg/L;退潮時介於 $0.42\sim3.60~mg/L$,平

均 1.68 mg/L。本季漲潮所有測站皆符合乙類海域水質標準(≦0.50 mg/L),而台西水閘 N4 與舊虎尾溪出海口 N5 測站測值分別為 0.50 與 0.37 mg/L 略高於甲類海域水質標準(≦0.30 mg/L);本季退潮除新虎尾溪出海口 N1 測站外,其餘測站不符合乙類標準與所有測點皆不符合甲類,其中舊虎尾溪出海口 N5 之氨氮濃度最高達 3.60 mg/L,且不符合甲類水質標準逾 12 倍。推測為陸源畜牧廢水與都市家庭污水排入,造成河川水體氮磷類營養鹽負荷高,導致鄰近之潮間帶測點水質氨氮濃度偏高。

(11)硝酸鹽氮

硝酸鹽氮未設定標準。漲潮時介於 $0.03\sim0.11$ mg/L,平均 0.09 mg/L;退潮時介於 $0.11\sim0.63$ mg/L,平均 0.36 mg/L。漲潮時舊虎尾溪出海口 N5 之硝酸鹽氮濃度最高達 0.63 mg/L。

(12)亞硝酸鹽氮

亞硝酸鹽氮未設定標準,於退潮時平均高於漲潮時。漲潮時介於 $<0.01\sim0.03$ mg/L,平均 0.02 mg/L;退潮時介於 $0.08\sim0.25$ mg/L,平均 0.13 mg/L,落於歷次變動範圍內。

(13)正磷酸鹽

本季正磷酸鹽於漲潮時介於 0.024~0.094 mg/L,平均 0.053 mg/L;退潮時介於 0.213~0.753 mg/L,平均 0.428 mg/L。正磷酸鹽本季漲潮除新虎尾溪出海口 N1 與有才寮出海口 N3 外,其餘測點皆不符合甲類總磷標準 (≦0.05 mg/L,總磷係包括正磷酸鹽、聚(焦)磷酸鹽及有機磷等物質,正磷酸鹽乃總磷其中之一部份),且台西水閘 N1 測站不符合乙類海域總磷標準(≦0.08 mg/L);退潮時,測點皆不符合甲與乙類總磷標準,以舊虎尾溪出海口 N5 測站正磷酸鹽測值最高,為 0.753 mg/L。新興區潮間帶水質位於內陸排水與海域斷面之交界區,因多受內陸畜牧及家庭等有機廢污水影響,造成水質正磷酸鹽濃度偏高。

(14)矽酸鹽

矽酸鹽未設定標準,漲潮時介於 0.296~0.936 mg/L,平均 0.564 mg/L,退潮時介於 2.29~5.78 mg/L,平均 3.49 mg/L。本季漲潮時以台西水閘 N4 測站之矽酸鹽濃度最高 0.936 mg/L;而退潮時以舊虎尾溪出海口 N5 測站之矽酸鹽濃度最高達 5.78 mg/L。

(15)總酚

本季漲潮時總酚介於 ND<0.0017~<0.0050 mg/L,平均 0.0042 mg/L,所有測點皆符合乙類海域水質標準;退潮時皆為<0.0050 mg/L,所有測點皆符合乙類海域水質標準。

(16)油脂

本季油脂漲潮時介於 $<0.5\sim1.2 \text{ mg/L}$,平均 0.8 mg/L,退潮時介於 $1.1\sim1.8 \text{ mg/L}$,平均 1.4 mg/L,與歷次相比無異常。

(17)重金屬

a.銅

本季重金屬銅於漲、退潮時均符合標準乙類海域水質標準 ($\leq 0.03~mg/L$),漲潮時介於 $0.0006 \sim 0.0014~mg/L$ 之間,平均 0.0010~mg/L;退潮時介於 $0.0020 \sim 0.0057~mg/L$ 之間,平均 0.0030~mg/L。

b.鎘

重金屬編於漲、退潮時均符合標準乙類海域水質標準(\leq 0.005 mg/L),漲、退潮時各測站數值皆為 ND<0.0001 mg/L,與歷次相比無異常。

c.鉛

鉛於漲、退潮時均符合乙類海域水質標準($\leq 0.01~mg/L$),漲潮時介於 ND< $0.0002\sim0.0006~mg/L$,平均 0.0004~mg/L;退潮時介於 $0.0017\sim0.0035~mg/L$,平均 0.0025~mg/L,落於歷次變動範圍內。

d.鋅

鋅於漲、退潮時均符合乙類海域水質標準($\leq 0.03 \text{ mg/L}$),漲潮時介於 $0.0052\sim0.0089 \text{ mg/L}$,平均 0.0073 mg/L;退潮時介於 $0.0095\sim0.0200 \text{ mg/L}$,平均 0.0136 mg/L。漲潮時以新虎尾溪出海口 N1 測站之鋅含量最高達 0.0089 mg/L;退潮時以有才寮出海口 N3 測站之鋅含量最高達 0.0200 mg/L。

e.總鉻

總鉻(三價+六價鉻)於漲、退潮時均低於六價鉻標準(≦0.05

mg/L) , 漲 時 皆 為 ND<0.002 mg/L ; 退 潮 時 皆 為 介 於 $ND<0.002\sim<0.003$ mg/L , 平均 0.002 mg/L 。 與歷 次相 比 無 異 常 。

f.砷

砷於漲、退潮時均符合標準($\leq 0.05~mg/L$),漲潮時介於 $0.0018\sim0.0031~mg/L$,平均 0.0024~mg/L;於退潮時介於 $0.0054\sim0.0113~mg/L$,平均 0.0088~mg/L。本季漲潮時以有才寮出海口 N3 砷濃度最高為 0.0031~mg/L,退潮時以舊虎尾溪出海口 N5 測站之砷濃度最高為 0.0113~mg/L,但仍符合乙類海域之標準,與歷次相比無異常。

g.汞

汞於漲潮時汞濃度皆為 ND<0.0001 mg/L,符合國內水質汞濃度標準(≤ 0.001 mg/L),退潮時汞濃度皆為 ND<0.0001 mg/L,符合國內水質汞濃度標準(≤ 0.001 mg/L),與歷次相比無異常。

h.鐵

鐵未設定標準,漲潮時介於 $0.0467\sim0.237~mg/L$,平均 0.131~mg/L,於退潮時介於 $0.547\sim1.24~mg/L$,平均 0.791~mg/L,與歷 次相比無異常。

i. 鈷

本季漲潮時介於< $0.0003\sim0.0003$ mg/L, 平均 0.0003 mg/L, 於退潮時介於 $0.0007\sim0.0018$ mg/L, 平均 0.0014 mg/L。

j.鎳

鎮與歷次相比無異常均符合標準($\leq 0.05 \text{ mg/L}$)。漲潮時介於 <0.0006~0.0010 mg/L,平均 0.0008 mg/L;本季於退潮時介於 0.0013~0.0031 mg/L,平均 0.0026 mg/L,與歷次相比無異常。

(18)總有機碳

本季總有機碳漲潮介於 $1.0\sim1.6$ mg/L, 平均 1.4 mg/L; 退潮介於 $2.5\sim4.8$ mg/L, 平均 3.6 mg/L。

(19)葉綠素 a

葉綠素 a 未設定標準。漲潮時介於 $1.4 \sim 7.1~\mu g/L$,平均 $5.5~\mu g/L$;退潮時介於 $9.1 \sim 21.6~\mu g/L$,平均 $15.3~\mu g/L$ 。

(20) 氰化物

本季漲潮時氰化物濃度皆為 ND<0.001 mg/L , 退潮時氰化物 濃度皆為 ND <0.001 mg/L , 氰化物濃度全數符合標準(≤ 0.01 mg/L)。

(21)硫化物

硫化物未設定標準,漲潮時皆為 ND<0.02 mg/L,退潮時介於 $ND<0.02\sim<0.05 \text{ mg/L}$,平均 0.03 mg/L,皆落於歷次變動範圍內。

本季新興區潮間帶區水質項目與114年第二季(4~6月)監測相比, 本季大腸桿菌群之不合格率上升為50%,磷濃度不合格率有下降為 75%,氨氮不合格率與上季相比有下降為75%,退潮時舊虎尾溪出 海口N5測站之氨氮高於甲類水體水質標準12倍,整體水質品質相 對較差。重金屬方面,於漲、退潮期,多能符合國內「保護人體健康 之海洋環境品質標準」,未來將持續監測以掌握此區域水質變動情形。

新興區潮間帶四測站水質歷次變化如圖 2.9-1 所示,自 88 年 8 月 起調整為季採一次漲、退潮調查。新興區填海造地工程於 87 年 5 月 開工,其潮間帶四測站於施工前後水質歷次變動情形說明如下:

(1)N1

新虎尾溪之潮間帶測站,水質變化直接受麥寮隔離水道及新虎尾溪排水所影響。其 pH 曾於 87 年 7 月、88 年 9 月出現不符甲類海域

標準之情形,而近年未達甲類海域水質標準之比例已明顯降低,僅 100年11月(7.260)退潮時出現1次不符甲類海域標準之紀錄。懸浮 固體物長期觀之,多以退潮時懸浮固體高於漲潮時,歷次最高濃度曾 於 99 年 10 月退潮時測得 768 mg/L 後回復降低,另於 100 年 11 月 漲潮與 102 年 1 月退潮時亦有偏高現象,懸浮固體物濃度介於 280~ 315 mg/L 左右, 105 年 11 月退潮達 377 mg/L。濁度歷年變化趨勢與 懸浮固體物相似,以 90 年至 114 年第 3 季監測結果顯示,除 90 年 10月(400NTU)、96年8月(340NTU)、99年10月(800 NTU)、102年 1月(200 NTU) 、103 年 4月(190NTU)、103 年 8月(140 NTU)、103 年 10 月(150NTU)、104 年 7 月(130 NTU)、104 年 10 月(190 NTU)、 105 年 11 月(140 NTU)、106 年 1 月(130 NTU)、106 年 10 月(230 NTU) 、110年8月漲潮(120 NTU)與111年3月退潮(160 NTU)曾有 濁度偏高現象外,歷次監測都落於長期變動範圍內。溶氧於民國 94 年前未達甲類海域標準(≥5.0 mg/L)之比例較高,95 年至 114 年第 3 季歷次監測期間,97年9月~11月測值、108年第4季、109年第3 季、110年第2季、112年第2季與114年第3季有不符標準之情形, 其餘皆落於甲類海域標準範圍內。大腸桿菌群變動幅度較海域斷面 為大,偶有未達甲類海域標準(1000 CFU/100mL)之情形,歷次最高值 出現於 95 年 1 月,達 3×10⁵ CFU/100mL,顯示潮間帶區易受內陸有 機物污染。氨氮歷年未達甲類海域標準(≦0.3 mg/L)之比例偏高,以 退潮時濃度高於漲潮時,至95年1月曾測得歷次最高濃度5.13 mg/L; 磷亦同,退潮濃度之不合格率明顯高於漲潮時,以95年1月測得歷 次最高濃度 1.54 mg/L。重金屬方面,除銅濃度於 88 年 12 月退潮時 曾測得 159 μg/L 之高濃度外,砷歷次變動多小於 10 μg/L,而汞濃度 除 100 年 11 月略微偏高外,至 101 年監測已回穩降低,歷次亦多在 0.50 μg/L 變動範圍內。硫化物除 99 年 4 月漲潮(0.58mg/L)有偏高現 象外,歷年多在 0.02 mg/L 變動範圍內。整體觀之,N1 測站近年監 測,仍多以氨氮、正磷酸鹽以及大腸桿菌群濃度未符合甲類海域標準 之情形較為顯著,其餘數據與歷次監測結果相較變化較小。

(2)N3

有才寮潮間帶測站之 pH 亦曾於 87 年 7 月、92 年 7 月與 97 年 10 月出現不符甲類海域標準之情形,而 98 年~114 年第 3 季歷次監測皆落於甲類海域水質變動範圍內。濁度及懸浮固體歷年變動幅度大,多以退潮時濃度高於漲潮時,且風浪較強的東北季風期,因強烈的波浪翻攪潮間帶區底質,皆對本區域整體的懸浮固體與濁度濃度有顯著影響,以致 90 年 10 月(450 NTU/279 mg/L)、98 年 9 月(260 NTU/313 mg/L)、99 年 10 月(350 NTU/397 mg/L)、103 年 10 月(550NTU/674

mg/L)、106 年 8 月(170NTU/189 mg/L)、106 年 10 月(190NTU/219 mg/L)、108 年 6 月(400NTU/356 mg/L)與 110 年 8 月(950NTU/748 mg/L)與 114 年 8 月(310NTU/344 mg/L)皆曾出現水質濁泥濃度偏高 現象。大腸桿菌群偶有未達甲類海域標準(1000 CFU/100mL)之情形, 而 93 年 8 月、97 年 10 月、99 年 8 月、101 年 2 月、103 年 8 月與 108年6月有不符合標準值100倍以上之高濃度含量,可能受到陸源 污染,最需注意觀察。氨氮歷年未達甲類海域標準(≦0.3 mg/L)之比 例亦偏高,歷年最劣濃度以 105 年 3 月(8.04 mg/L)最高,101 年 2 月 (4.85 mg/L)次之。歷次正磷酸鹽濃度於退潮時濃度均高於漲潮時,且 所有測值均高於總磷標準,以108年6月出現歷次最高值1.58 mg/L。 各重金屬元素含量之歷年監測多能符合保護人體健康相關環境基準, 其中銅濃度於 99 年 12 月最高,達 19.3 μg/L,但仍低於基準值;鉛 於漲、退潮時變動不大,以 89 年 12 月出現歷次最高值 12.6 μg/L。 鉻歷次變動不大,遠低於基準值; 砷歷次變動呈現不規則變化,退潮 時濃度多高於漲潮時;汞濃度多數低於偵測極限,僅 94 年 3 月 (1.7μg/L)與 100 年 11 月(1.1μg/L)測值有略微升高情形,但仍符合保 護人體健康相關環境基準需小於 0.002 mg/L 之規定。整體觀之, N3 測站於退潮時大多仍以生化需氧量、氨氮、與正磷酸鹽濃度最常不符 合甲類海域標準,另溶氧濃度以及大腸桿菌群含量亦偶有不符標準 之情形,而近年受到有才寮大排下游及出海口段淤沙情形加劇之影 響,以致出海口行水斷面緊縮,因而阻礙了水體的流通交換,使得水 體環境品質變差,須留意觀察。

(3)N4

台西海埔地水閘門測站其 pH僅於 87年7月出現不符合甲類海域標準之情形,其餘歷年之監測均落於甲類海域標準範圍內。濁度除 90年 10月與 110年8月測得異常高值分別為 900與 950 NTU 外,整體變動不大。懸浮固體物則呈現不規則變化,最高濃度出現於 10年8月測得(236 mg/L),而 89年 12月測得 232 mg/L 次之。氨氮歷年退潮時濃度高於漲潮時,歷年最劣濃度以 105年 3月(3.76 mg/L)最高,97年 12月(3.58 mg/L)次之。大腸桿菌群偶有不符合甲類海域標準(1000 CFU/100mL)之情形,歷次最高值出現於 97年 12月,達 3.8×10⁵ CFU/100mL。歷次正磷酸鹽濃度於退潮時濃度均高於漲潮時,最劣濃度出現於 95年 1月退潮時,其後降低回復。重金屬銅、鉛濃度歷次變動高低差異約在 10 µg/L 以內;砷歷次變動呈現不規則變化,於 97年 9月曾測得歷次最高含量,達 24.3 µg/L,但仍低於基準值;汞濃度多數低於偵測極限,以 90年至 114年第3季監測結果顯示,僅 94年 2月(2.6 µg/L)有濃度偏高現象,其後降低回穩;整體觀之,N4 測

站整體水質以漲潮時優於退潮時,且多以生化需氧量、氨氮、與正磷酸鹽濃度最常不符合甲類海域標準,而溶氧以及大腸桿菌群含量亦偶有不符標準之情形,其餘監測數據與歷年監測結果相較變化較小。 (4)N5

舊虎尾溪出海潮間帶測站除承接來自該溪之排水外,另受馬公厝 排水所影響,水質變化較大。其 pH 曾於 87 年 7 月、97 年 10 月、99 年 12 月與 101 年 2 月出現不符合甲類海域水質標準之情形,而 101 年至 114 年第 3 季監測期間,皆落於甲類海域水質變動範圍內。懸 浮固體歷以 105 年 3 月達最高,整體觀之,其懸浮固體濃度明顯較 其餘潮間帶 N1、N3 與 N4 等三測站為高, 濁度亦有相同趨勢。大腸 桿菌群偶有未達甲類海域標準(1000 CFU/100mL)之情形,歷次最高 值出現於 94 年 12 月,達 4.1×10⁶ CFU/100mL。歷次氨氮未達甲類海 域標準(≦0.3 mg/L)之比例偏高,以退潮時濃度大多高於漲潮時,至 111年3月測得歷次最高濃度20.9 mg/L,不符合甲類海域水質標準 約69.7倍。磷亦同,退潮時,歷次正磷酸鹽濃度多數高於總磷標準, 最劣濃度出現於 90 年 3 月 , 達 1.85 mg/L。此外 , 96 年 1 至 3 月生 化需氧量測值分別為 6.3、4.7、6.0 mg/L, 111 年 3 月生化需氧量測 值為 7.8 mg/L, 皆不符甲類水質標準, 顯示有機物污染嚴重。重金屬 銅、鉛濃度皆於 95 年 12 月出現歷次最高值,分達 79.8 μg/L 與 48.5μg/L,其中銅含量有不符合保護人體健康相關環境基準之情形; 鉻歷次變動不大,高低差異約在 10 μg/L 以內,遠低於基準值;砷歷 次變動呈現不規則變化,退潮時濃度亦多高於漲潮時,歷次最高濃度 達 28.1µg/L, 但仍低於基準值; 汞濃度多數低於偵測極限濃度,僅 100 年11月(7.2 μg/L)退潮時濃度略微偏高且不符合標準,之後回復降低, 由 101 年至 114 年第 3 季監測期間皆能符合標準。硫化物歷次變動 多小於 1 mg/L,歷次最高濃度出現於 99 年 4 月,達 0.8 mg/L。整體 而言, N5 測站整體水質以漲潮時優於退潮時, 且多以生化需氧量、 氨氮、與正磷酸鹽濃度最常不符合甲類海域標準,而溶氧以及大腸桿 菌群含量偶有不符標準之情形,而 100 年度汞濃度雖曾有略不符合 標準之情形,惟自 101 年 2 月迄今之監測結果均符合標準,無明顯 異常。

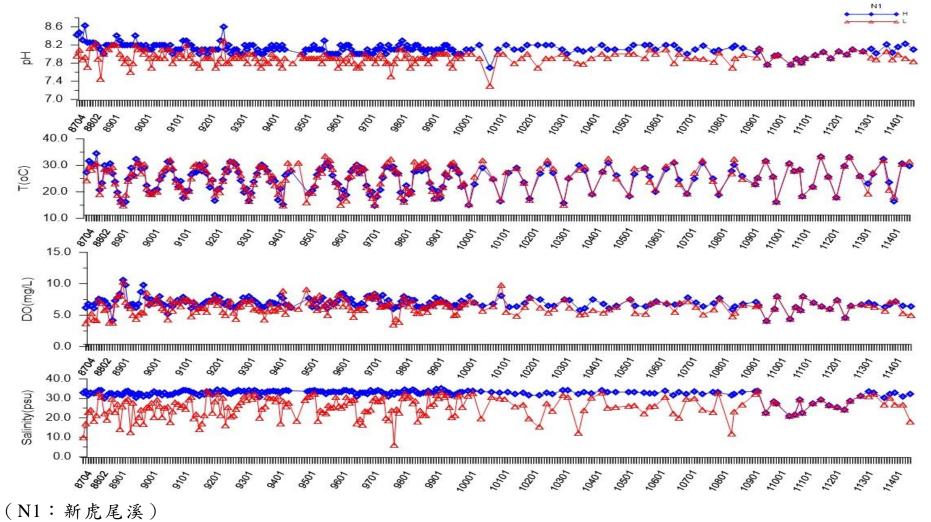


圖 2.9.1-1 新興區潮間帶水質歷次調查結果

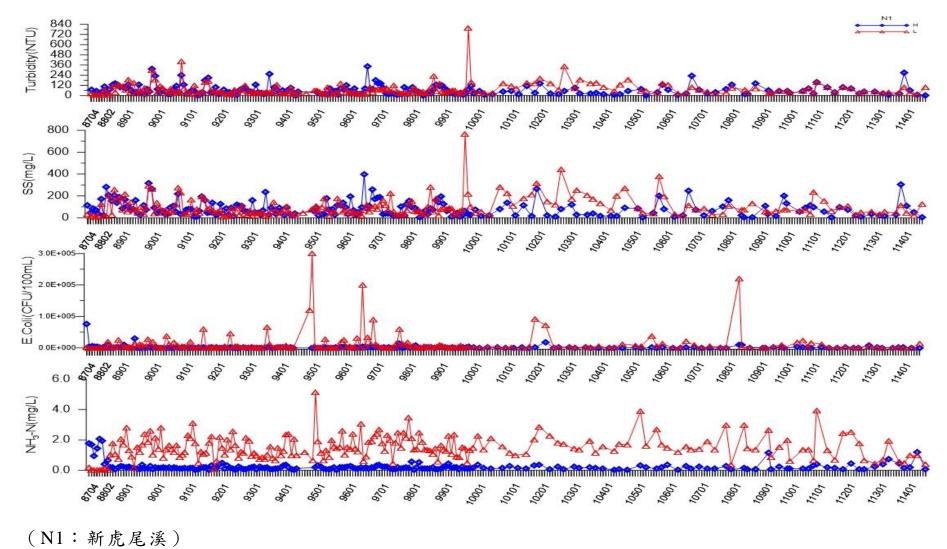


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 1)

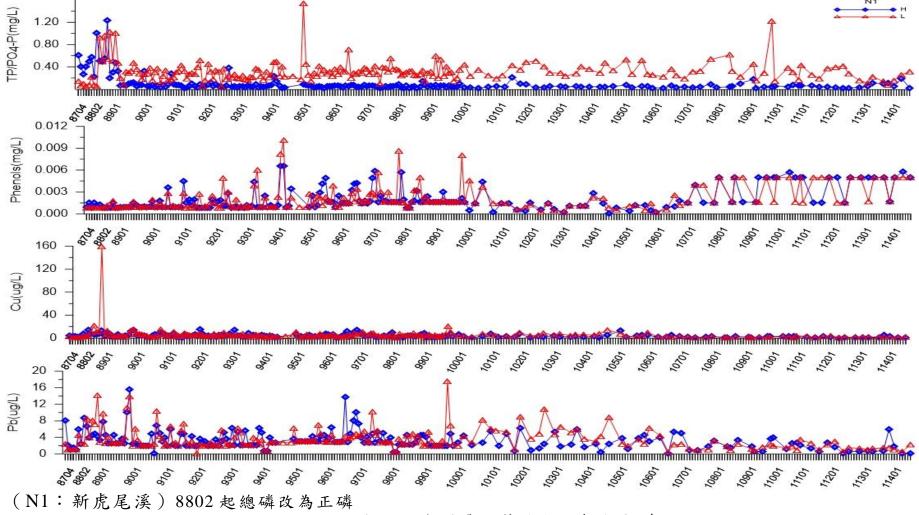


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 2)

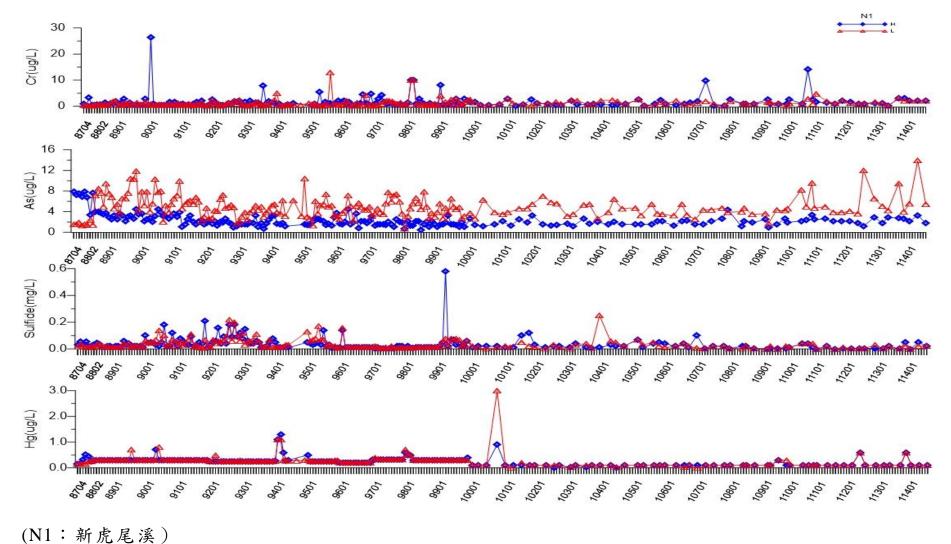


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 3)

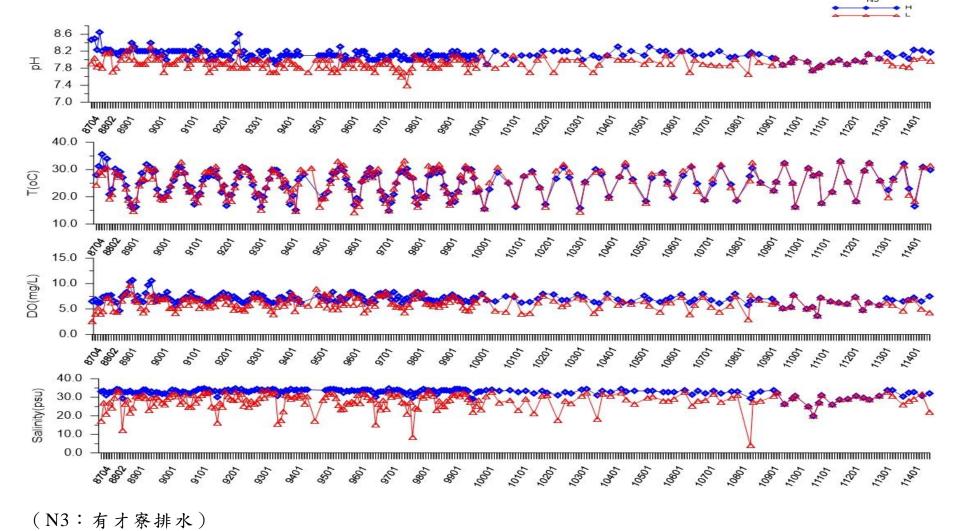


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 4)

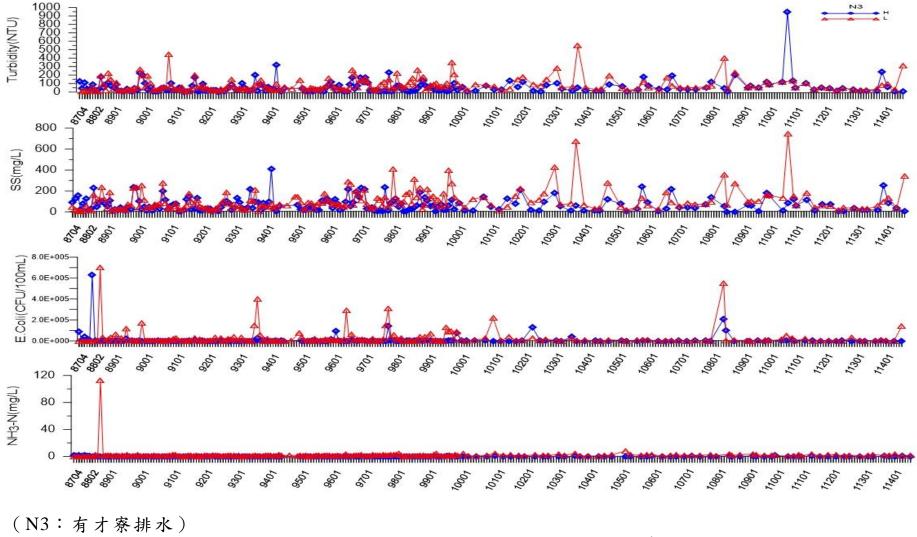
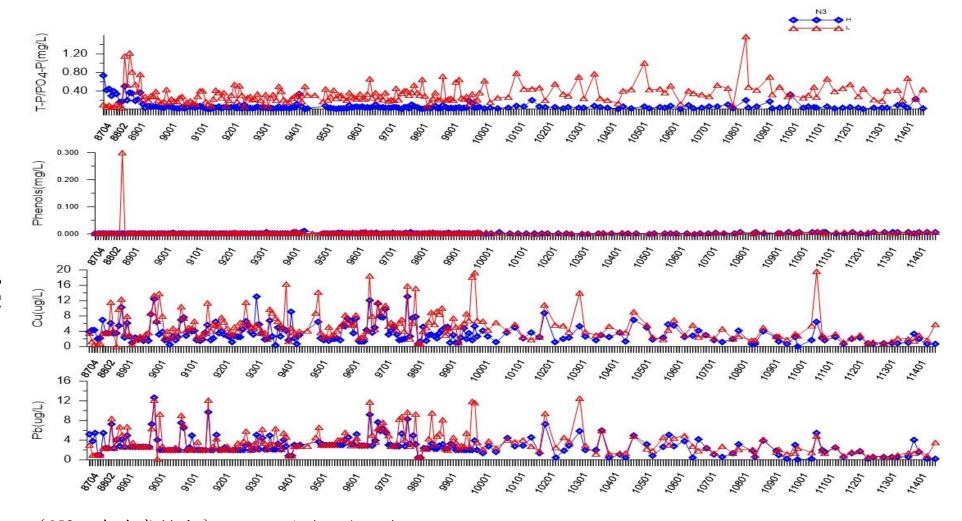



圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 5)

(N3:有才寮排水)8802 起總磷改為正磷 圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 6)

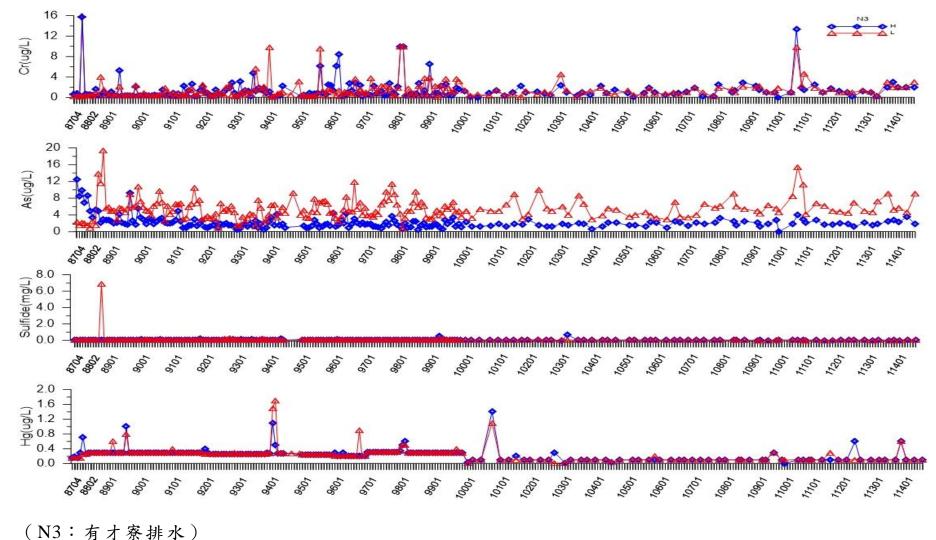


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 7)

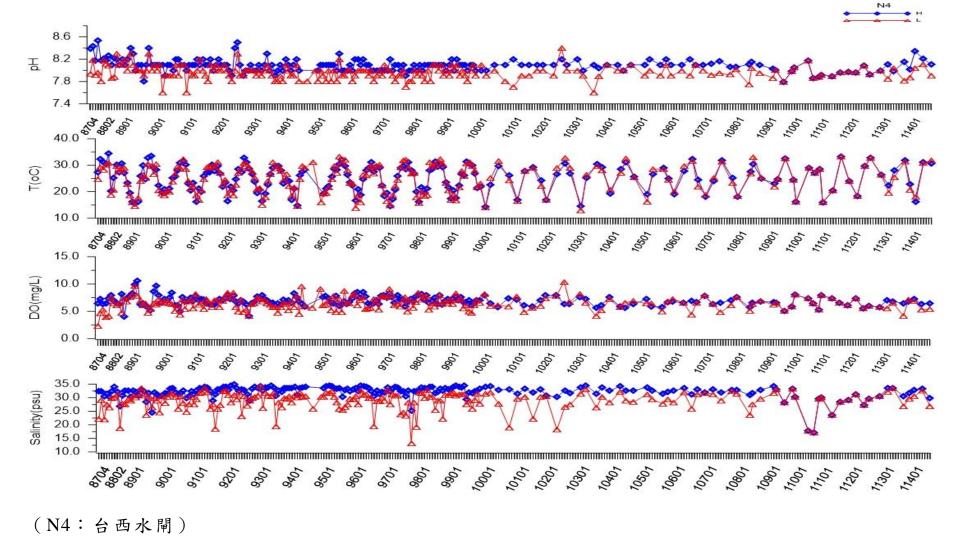


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 8)

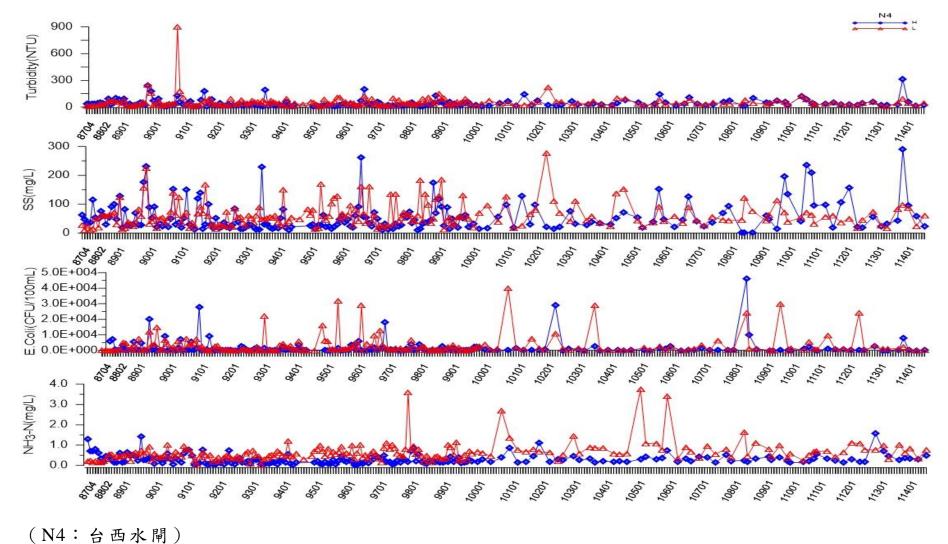
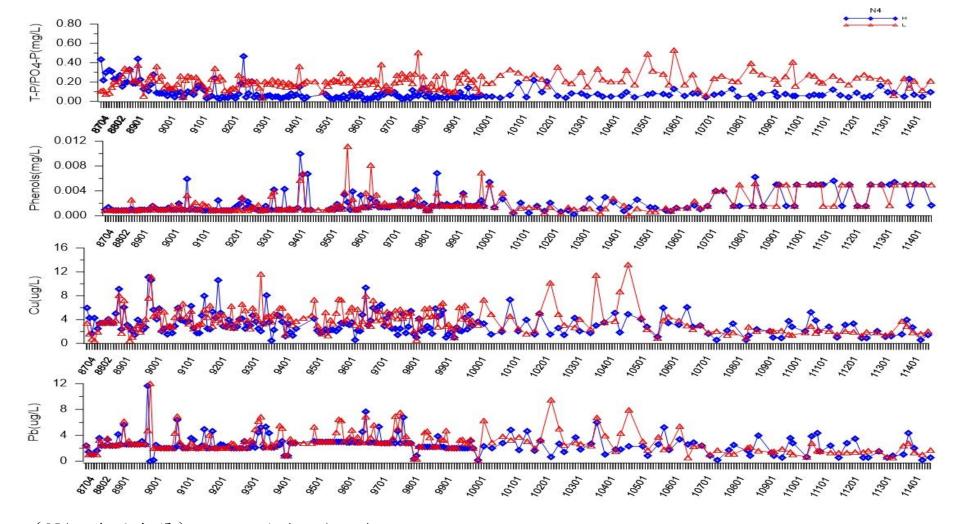



圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 9)

(N4:台西水閘) 8802 起總磷改為正磷 圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 10)

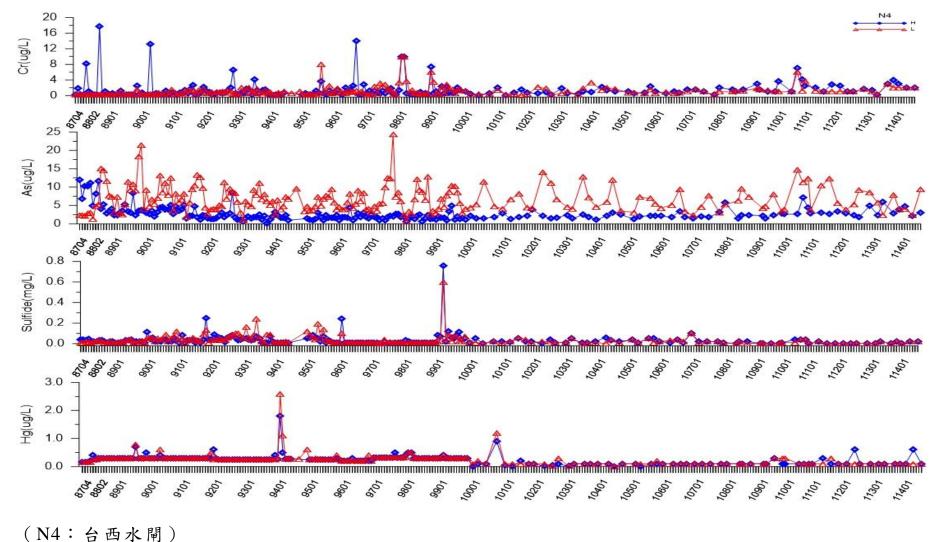
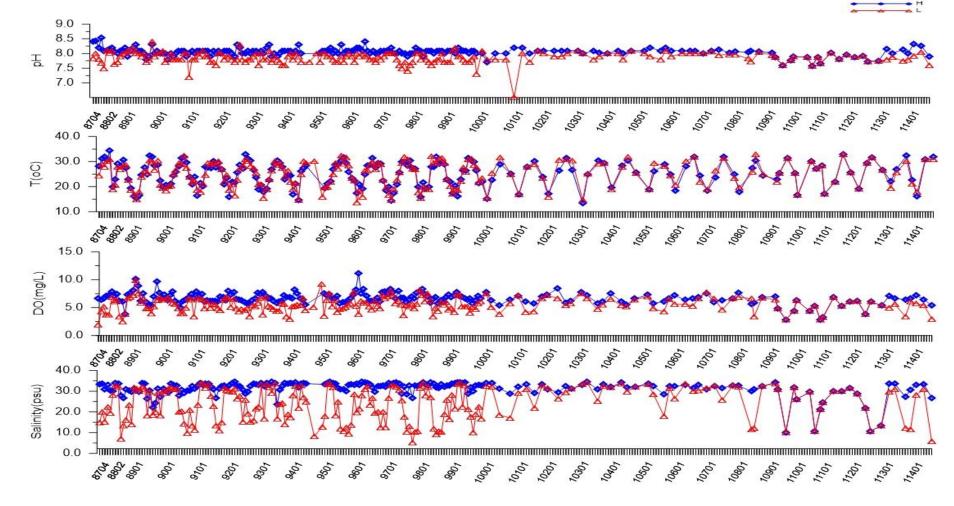



圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 11)

(N5: 舊虎尾溪) 圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 12)

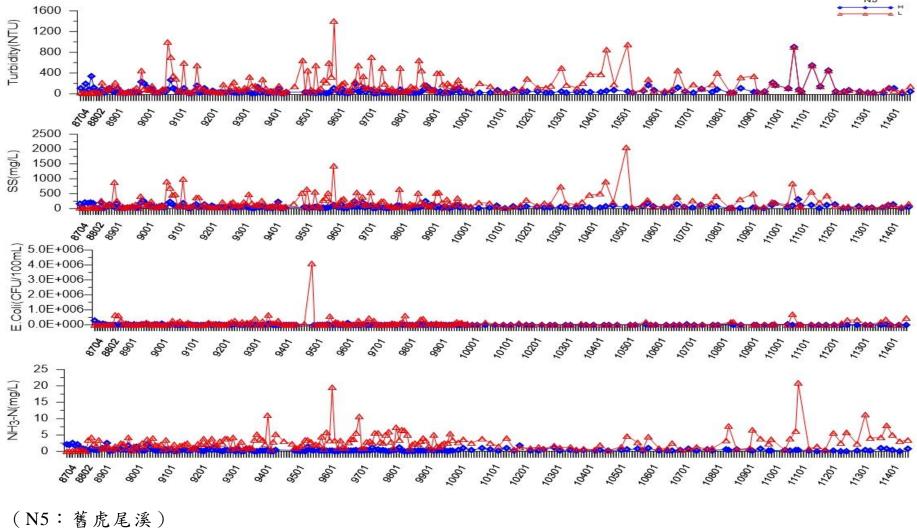
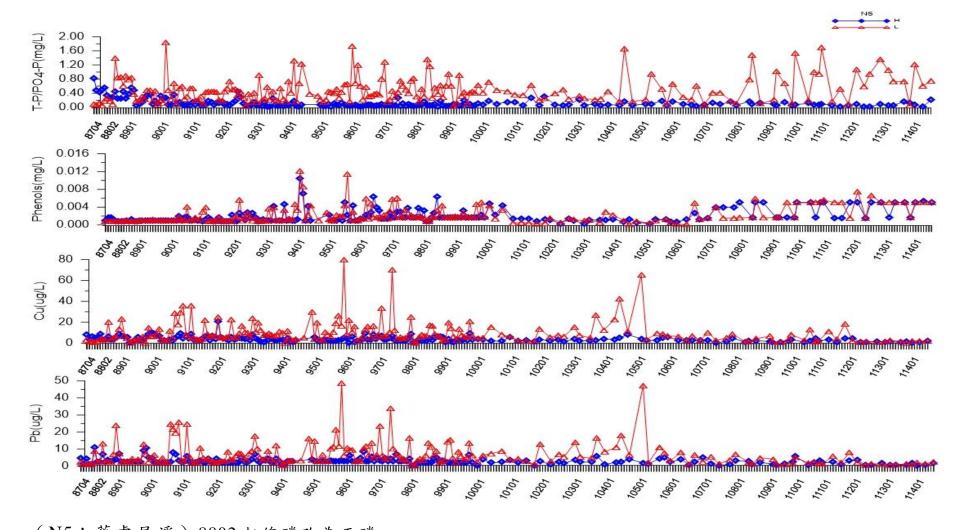



圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 13)

(N5: 舊虎尾溪) 8802 起總磷改為正磷 圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 14)

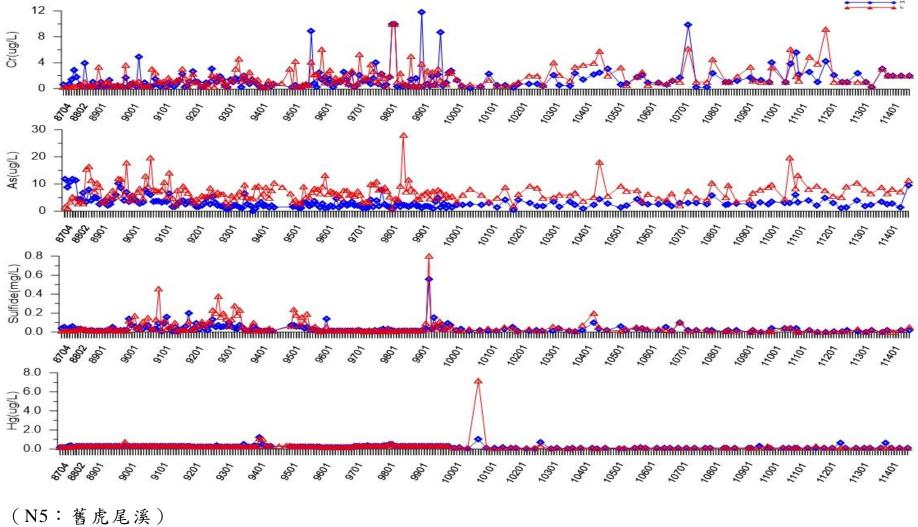


圖 2.9.1-1 新興區潮間帶水質歷次調查結果(續 15)

2.9.2 底質部份

本年度計畫目前已完成兩次底質採樣工作,海域底質採樣(同水質)已於 114年02月27、03月03日與114年08月19、20日完成採樣作業,新興區潮間帶底質採樣於114年02月25日與114年08月21日完成,而陸域底質採樣業於114年03月06日與114年09月04、08日完成。

(1) 陸域底質方面:

底質銅(Cu)含量 28.1(西湖橋下游)~45.5(夢麟橋)mg/kg-dry,平均值為 35.4 mg/kg-dry,本季所有測站之"銅"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(50.0 mg/kg)相比皆無異常,以美國海洋大氣總署(NOAA)標準檢視,本季除夢麟橋與新興橋測站外,其餘測站之"銅"含量符合美國 NOAA 海域沉積物重金屬對生物毒性最低影響範圍值(Effect Range Low, ERL)銅為 34 mg/kg 之標準。

底質鎘(Cd)含量介於 ND<0.50~<0.68(新興橋) mg/kg-dry, 平均值為 0.54 mg/kg-dry,除新興橋外,其餘測站測值與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.65 mg/kg)相比皆無異常。本季所有測站測值皆符合美國海洋大氣總署(NOAA) ERL 之濃度(1.2 mg/kg)。

底質鉛(Pb)含量介於 0.80~13.8(蚊港橋下游) mg/kg-dry, 平均值為 11.8 mg/kg-dry, 本季所有測站之"鉛"含量與國內底質鉛容許標準之下限值(48.0 mg/kg)相比皆無異常,及符合美國海洋大氣總署(NOAA) ERL 之濃度(46.7 mg/kg)。

底質鋅(Zn)含量介於120(西湖橋)~194 mg/kg-dry(夢麟橋),平均值為140 mg/kg-dry,本季除夢麟橋與新興橋測站外,其餘測站之"鋅"含量與國內「底泥品質指標之分類管理及用途限制辦法」之鋅含量下限值(140 mg/kg)相比皆無異常。本季除夢麟橋與新興橋下游測站外,其餘測站"鋅"含量不符合美國 NOAA ERL 之濃度(150 mg/kg)標準。

底質鉻(Cr)含量介於 27.0(西湖橋)~31.3 mg/kg-dry(蚊港橋),平均值為 29.2 mg/kg-dry,本季各測站之"鉻"皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(76 mg/kg),以及美國 NOAA 的 ERL 之濃度(81 mg/kg)。

底質鎳(Ni)含量介於 26.9(西湖橋)~31.3 mg/kg-dry(蚊港橋),平均值為 29.1 mg/kg-dry,本季所有測站皆高於國內「底泥品質指標之分類管理及用途限制辦法」之鎳下限值(24 mg/kg),以及所有測站皆高於國內標準與美國 NOAA 鎳 ERL 為 20.9 mg/kg,需持續觀察。

底質砷(As)含量介於 6.69(西湖橋)~15.0 mg/kg-dry(新興橋),平均值為 10.5 mg/kg-dry,本季除蚊港橋、西湖橋與西湖橋下游測站外,其餘測點皆高於國內「底泥品質指標之分類管理及用途限制辦法」之砷含量下限值(11.0 mg/kg),而本季除西湖橋與西湖橋下游測站外,其餘測站之砷含量皆略高於美國 NOAA 砷 ERL 濃度

(8.2 mg/kg), 需持續觀察。

底質汞(Hg)含量本季測站之數值皆為<0.100 mg/kg-dry,各樣點之"汞"皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.23 mg/kg),而本季除西湖橋測站,其餘測站之汞含量皆符合美國 NOAA 汞 ERL 之濃度(0.15 mg/kg)。

(2) 海域底質方面:

底質銅(Cu)含量介於<4.00~35.5(N3) mg/kg-dry, 平均值為 8.26 mg/kg-dry, 所有 測點之"銅"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值 (50.0 mg/kg),以及除有才寮出海口 N3 測站外,其餘測站皆低於美國 NOAA 海域 沉積物重金屬對生物毒性最低影響範圍值(Effect Range Low, ERL)銅為 34 mg/kg 之標準。

底質鎘(Cd)含量測點測值皆為 ND <0.50 mg/kg-dry,所有測站"鎘"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值(0.65 mg/kg)相比皆無異常,全數測站皆符合美國海洋大氣總署(NOAA) ERL 之鎘濃度(1.2 mg/kg)。

底質鉛(Pb)含量測值介於<7.00~7.61(N3) mg/kg-dry,平均 7.05 mg/kg-dry,本季所有測站之"鉛"含量與國內「底泥品質指標之分類管理及用途限制辦法」之下限值 (48 mg/kg)相比皆無異常,及符合美國海洋大氣總署(NOAA) ERL 之鉛濃度(46.7 mg/kg)。

底質鋅(Zn)含量介於 33.2~164(N3) mg/kg-dry, 平均值為 56.1 mg/kg-dry,除有才寮出海口 N3 測站外,其餘測站"鋅"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」之下限值 (140 mg/kg)外,以及美國海洋大氣總署(NOAA)底質鋅ERL 濃度(150 mg/kg)。

底質鉻(Cr)含量介於<23.0~28.1(N3)mg/kg-dry,平均值為23.4 mg/kg-dry,本季海域各樣點之"鉻"含量均低於國內「底泥品質指標之分類管理及用途限制辦法」容許下限值(76.0 mg/kg)與美國海洋大氣總署(NOAA) 底質鉻 ERL 濃度標準,與歷次相比無異常。

底質鎳(Ni)含量介於 15.4~26.6(N3) mg/kg-dry, 平均值為 20.2 mg/kg-dry, 除有才寮出海口 N3 測站外,其餘測站皆低於"鎳"之國內「底泥品質指標之分類管理及用途限制辦法」之下限值(24 mg/kg),以及美國海洋大氣總署(NOAA) ERL 之鎳濃度(20.9 mg/kg)。

底質砷(As)含量介於 3.53~5.86 (N3) mg/kg-dry, 新興區出海口潮間帶平均值為 3.53 mg/kg-dry, 所有測站"砷"含量皆低於國內外底質砷容許標準(下限值為 11.0 mg/kg), 以及美國海洋大氣總署(NOAA) 底質砷 ERL 濃度(8.2 mg/kg)標準。

底質汞(Hg)含量測值介於 ND<0.035~<0.100 mg/kg-dry,平均值為 0.040 mg/kg-dry,本季各測點之"汞"含量皆低於國內「底泥品質指標之分類管理及用途限制辦法」

之汞含量下限值(0.23 mg/kg)及美國海洋大氣總署(NOAA)底質線 ERL 濃度(0.15 mg/kg)標準。

分析民國 100 年至 114 年第 3 季的 31 次調查結果,顯示雲林離 島產業園區海域測站樣點之底質重金屬含量多數可符合參考的國內 外底質沉積物規範。自102年度至114年第3季,新興區出海口潮間 带區有少數樣點之底質"編"、"鉛"、"鋅"、"鎳"與"砷"含量略微偏高, 且高於國內「底泥品質指標之分類管理及用途限制辦法」與美國海洋 大氣總署(NOAA)底質標準,114 年第 3 季海域底質重金屬測值均低 於參考標準下限值,但潮間帶底質有才寮出海口 N3 測站之"砷"與" 鎳"含量,有高於參考國內標準下限值之情形,將持續追蹤觀察。而 在陸域測站方面,鄰近麥寮區及新興區之附近河川與河口測點,包 含新、舊虎尾溪、有才寮大排與馬公厝大排之底質重金屬"鎳"含量 皆普遍偏高,"鎘"、"鋅、與"砷"含量有不符合國內「底泥品質指標之 分類管理及用途限制辦法」相關重金屬含量下限值情形,與美國 NOAA 底質容許標準之情形。100 年與 101 年底質含量偏高之重金屬 元素為"銅"與"鋅",102年則為"銅"、"鉛"、與"鋅",而103年與105 年,"銅"、"鉛"、"鋅"、"鎳"、與"砷"皆曾出現不符合標準之情形。 106 年的結果顯示陸域河口區底質"鉛"、"銅"、"鋅"、鎳"、與"砷"含 量略微偏高。107年的結果顯示陸域河口區底質"鋅"、鎳"、與"砷"含 量略微偏高。108年的結果顯示陸域河口區底質"銅"、"錦"、"鋅"、 鎳"、與"砷"含量略微偏高部分樣點有不符合國內「底泥品質指標之 分類管理及用途限制辦法」與美國海洋大氣總署(NOAA)底質標準之 情形。110 與 111 年的結果顯示陸域河口區底質"銅"、"鉛"、"鋅"、 鎳"與"砷"含量略微偏高部分樣點有不符合國內「底泥品質指標之分 類管理及用途限制辦法」。112年的結果顯示陸域河口區底"銅"、"鋅 "、鎳"與"砷"含量略微偏高部分樣點有不符合國內「底泥品質指標之 分類管理及用途限制辦法 | 下限值。113年的結果顯示陸域河口區底 "銅"、"鋅"、"鉛"、"鎳"與"砷"含量略微偏高部分樣點有不符合國內 「底泥品質指標之分類管理及用途限制辦法」下限值。114年的結果 顯示陸域河口區底"銅"、"錦"、"鋅"、"鎳"與"砷"含量略微偏高部分 樣點有不符合國內「底泥品質指標之分類管理及用途限制辦法」下限 值將持續觀察。至31次監測期間顯示,與前幾年度相比不符合參考 標準的重金屬元素項目稍有改善,需持續監測留意。另由雲林沿海 底質狀態之空間變化趨勢顯示,底質重金屬鎘、鉻與汞濃度相對較 低,空間分佈較為均勻,而底質重金屬鋅濃度則以雲林縣轄內河川 及排水路樣點的含量最高,潮間帶區居次,而海域相對較低,整體

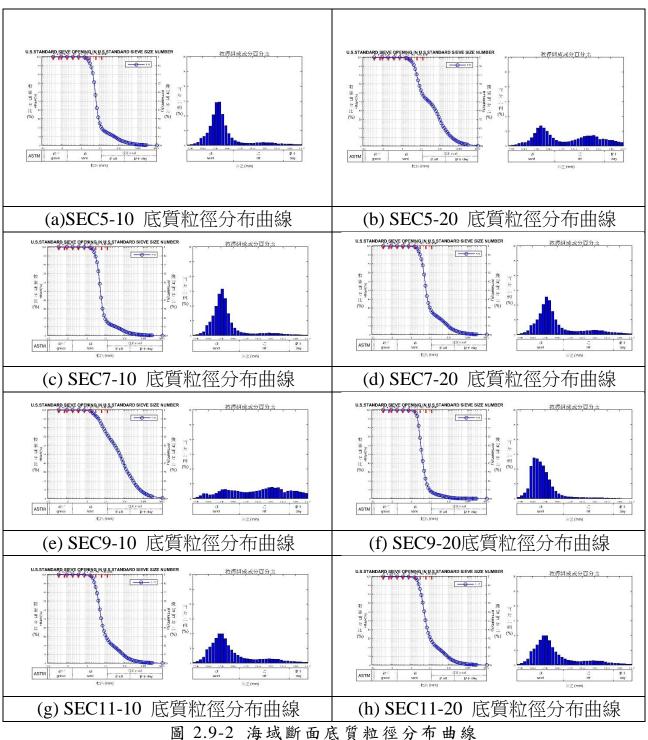
呈現由陸向海遞減之趨勢分布,顯示本調查區域內表層沉積物重金屬之主要傳輸方向,應來自陸源向海傳輸。

由圖 2.9-2 各海域樣點底質粒徑變化趨勢顯示,雲林海域的底質沉積物大部分是砂質,泥質僅呈零星分布,中值粒徑(D50) 0.014~0.242 mm,介於粉砂到中砂範圍。粉砂普遍分布全區,分布範圍從岸邊都-20 米水深都有,而細沙主要分布在-5 米水深區域。圖 2.9-3 依據潮間帶測站底質沉積物的結果,新虎尾溪出海口 N1、舊虎尾溪出海口 N5、有才寮出海口 N3 與台西水閘 N4大部分為中沙,中值粒徑(D50)為分別 0.198 mm、0.013 mm、0.121 mm 與 0.023 mm。此外,圖 2.9-4 顯示麥寮與新興區等陸域河川底質沉積物則大部分為泥質,中值粒徑(D50) 0.008~0.056 mm。

表 2.9-1 本季底質重金屬與國內外其他海域沉積物重金屬濃度比較

_	<i>√</i> C 2.	7-1 本子/								
			銅	鎘	鉛	鋅	鉻	鎳	砷	汞
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
NOAA	海域沉積物重金屬對 生物毒性最低影響範 圍值 (Effect Range Low, ERL) ⁽¹⁾		34	1.2	46.7	150	81	20.9	8.2	0.15
	海域沉積物重金屬對 生物毒性中間影響範 圍值 (Effect Range Medium ERM) ⁽¹⁾		270	9.6	218	410	370	51.6	70	0.71
葡萄牙	海域沉 含量 筆	積物中重金屬 [©] (2)	3~20		10~28	40~99	28~62			
地中海	⊧海域沉 含量筆	積物中重金屬 ⁶ 圍 ⁽³⁾	29~58	0.18~0.36	18.4~37.4	83~137				1
加食士	最低影響濃度 ⁽⁴⁾ (Lowest Effect Range)		16	0.6	31	120	26	16	6	0.2
加手入	最高影響濃度 ⁽⁴⁾ (Highest Effect Range)		110	10	250	820	110	75	33	2.0
		、港灣及沿海 屬含量範圍 ⁽⁵⁾	4.7~285	0.02~3.0	3~73	0.7~511	21~98			無
	海	左營、中洲等 域 屬含量範圍 ⁽⁵⁾	4.7~14	1.2~1.7	14~29	71~124	21~31			無
		質指標之分類 用途限制辦法 ⁽⁶⁾		0.65~2.49	48.0~161	140~384	76.0~233	24.0~80	11.0~33	0.23~0.87
	第三季 (114年 第二 次)	河口 測值範圍(平 均)	28.1~ 45.5 (35.4)	ND<0.50~ <0.68 (0.54)	9.80~13.8 (11.8)	120~194 (140)	27.0~31.3 (29.2)	26.9~31.3 (29.1)	6.69~15.0 (10.5)	<0.100~0.105 (0.101)
		海域/潮間帶 測值範圍 (平均)	<4.00~ 35.5 (8.26)	ND<0.50 (0.50)	<7.00~ 7.61 (7.05)	33.2~164 (56.2)	<23.0~28.1 (23.4)	15.4~26.6 (20.2)	3.53~5.86 (4.77)	ND<0.035~ <0.100 (0.040)
		MDL	2.55	0.56	9.38	5.45	7.44	4.46	0.151	0.035

註1: The SQuiRT cards should be cited as: "Buchman, M. F.., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages."


ERL:表示小於此值不會對水域產生負面生物影響。ERM表示超過此值可能會對水域造成毒性影響。

- 註5:環境部(原環保署)「台灣地區海域環境品質監測站網設置規劃」報告,1991.06。
- 註6:環境部(原環保署)「底泥品質指標之分類管理及用途限制辦法」,2012.01。

註2: Mil-Homens, Mário; Stevens, R L; Abrantes, Fatima F; Cato, I (2006): Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. *Continental Shelf Research*, 26(10), 1184-1205.

註3: Goldsmith S.L.;Krom M.D.;Sandler A.;Herut B.(2001)Spatial trends in the chemical composition of sediments on the continental shelf and slope off the Mediterranean coast of Israel. *Continental Shelf Research*, 21(16), 1879-1900.

註4: Canadian Council of Minister of the Environmental (CCME) . 2003. December, Canadian environmental quality guideline summary table.

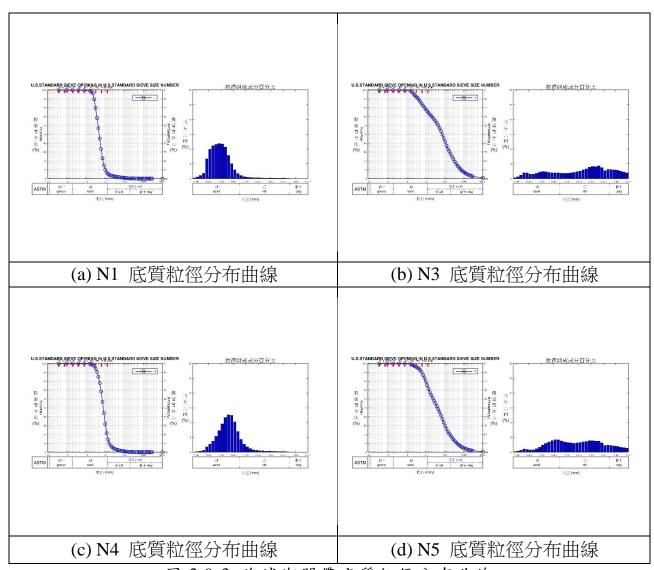


圖 2.9-3 海域潮間帶底質粒徑分布曲線

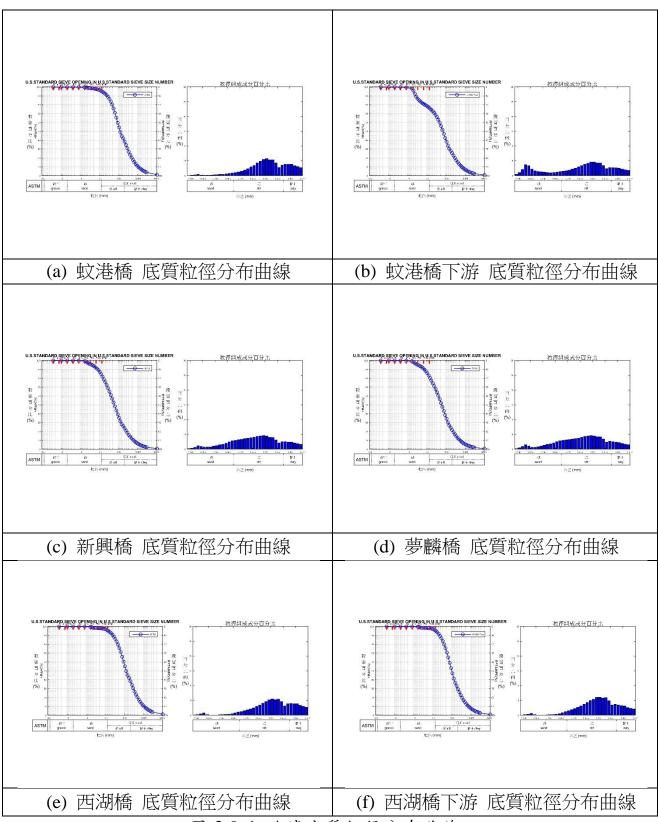


圖 2.9-4 陸域底質粒徑分布曲線

2.10 海域生態

2.10.1 浮游生物及水質調查

一、水文部分

海水溫度介於 28.6 至 31.5 °C 之間,平均 30.0 °C (表 2.10.1-1);海水鹽度介於 24.02 至 31.00 之間,平均值為 29.45;海水的溶氧量介於 5.30 至 6.64mg/l 之間,平均為 6.32 mg/l,而溶氧飽和度則介於 81.2 至 103.6%,平均為 98.4%。本季所有測站之海水溶氧量均符合甲類海域海洋環境品質標準,皆大於 5.0 mg/l。

二、水質部分

海水的 pH 值介於 7.82 至 8.06 之間,平均為 7.97,最低測值出現於 7-10 測站,所有測站的 pH 值均符合我國甲類海域海洋環境品質標準(介於 7.5~8.5);葉綠素 a 介於 0.12 至 0.56 μ g/l,平均 0.28 μ g/l,11-20 測站為最低值(表 2.10.1-1)。

海水中之營養鹽主要有氨氮、硝酸鹽、亞硝酸鹽、磷酸鹽和矽酸鹽,這些營養鹽是支持水中植物生長不可或缺的化學物質。在一般大洋中,營養鹽主要來源為有機質之分解。在沿岸地區,營養鹽除有機質之分解外,亦受溪流輸入家庭、農業及工業排放水的影響。

此次調查氨氮為離岸平均測值較高,硝酸氮、磷酸鹽和矽酸鹽均為近岸平均測值較高,亞硝酸氮近離岸平均測值相近。各測站氨氮介於 0.004 至 1.569mg/l 之間,平均值為 0.207 mg/l。硝酸氮介於 0.005 至 0.095mg/l 之間,平均值為 0.033 mg/l。亞硝酸氮介於 0.007 至 0.040 mg/l 之間,平均值為 0.015 mg/l。磷酸鹽介於 0.008 至 0.410 mg/l 之間,平均值為 0.064 mg/l。矽酸鹽介於 0.149 至 1.320 mg/l 之間,平均值為 0.341 mg/l (表 2.10.1-1)。

海水的生化需氧量介於 1.77 至 2.54 mg/l 之間, 平均為 2.15 mg/l, 以 7-10 測站的測值最高,離岸總平均測值高於近岸(表 2.10.1-1),本季八站中,僅 5-10 及 11-20 測站符合我國甲類海域海洋環境品質標準 (<2 mg/l)。

表層海水的懸浮固體量,介於 7.6 至 18.1 mg/l 間,平均為 11.6 mg/l,7-20 測站最高;透明度介於 0.5 至 2.1 m 間,平均為 1.3m (表 2.10.1-1)。一般而言,透明度與懸浮固體量呈反比,本季亦如此。

表 2.10.1-1 114 年 7 月 17 日採樣水文及水質化學分析結果

採様點	採樣時間	水溫, ℃	Sal.	DO, mg/l	DO, %	pН	Chl.a, μg/l	NH ₃ -N, mg/l	NO_3 -N, mg/l	NO ₂ -N, mg/l	PO ₄ ⁻³ -P, mg/l	SiO ₂ -Si, mg/l	BOD ₅ , mg/l	S.S., mg/l	透明度, m
5-10	08:45	31.2	30.04	6.33	100.7	7.91	0.53	0.004	0.046	0.012	0.011	0.175	1.77	16.5	0.8
7-10	09:43	30.9	24.02	5.30	81.2	7.82	0.24	1.569	0.095	0.040	0.410	1.320	2.54	18.1	0.5
9-10	10:30	30.1	29.41	6.64	103.5	8.03	0.30	0.040	0.051	0.015	0.032	0.282	2.09	9.1	1.2
11-10	05:42	29.0	29.47	6.38	97.6	7.89	0.13	0.004	0.028	0.015	0.023	0.311	2.05	8.3	1.4
近岸	平均值	30.3	28.24	6.16	95.8	7.91	0.30	0.404	0.055	0.020	0.119	0.522	2.11	13.0	1.0
	最高值	31.2	30.04	6.64	103.5	8.03	0.53	1.569	0.095	0.040	0.410	1.320	2.54	18.1	1.4
	最低值	29.0	24.02	5.30	81.2	7.82	0.13	0.004	0.028	0.012	0.011	0.175	1.77	8.3	0.5
	標準偏差	1.0	2.82	0.59	10.0	0.09	0.17	0.777	0.029	0.013	0.194	0.535	0.32	5.0	0.4
5-20	08:30	31.5	30.00	6.48	103.6	7.94	0.56	0.004	0.029	0.012	0.008	0.177	2.18	11.2	1.0
7-20	07:48	29.7	30.82	6.45	100.6	8.06	0.18	0.018	0.008	0.008	0.011	0.149	2.28	7.6	2.1
9-20	07:00	29.2	30.81	6.45	99.8	8.06	0.14	0.014	0.005	0.009	0.013	0.162	2.34	9.0	2.0
11-20	06:06	28.6	31.00	6.53	100.1	8.06	0.12	0.005	0.005	0.007	0.008	0.154	1.96	13.0	1.2
遠岸	平均值	29.8	30.66	6.48	101.0	8.03	0.25	0.010	0.012	0.009	0.010	0.160	2.19	10.2	1.6
	最高值	31.5	31.00	6.53	103.6	8.06	0.56	0.018	0.029	0.012	0.013	0.177	2.34	13.0	2.1
	最低值	28.6	30.00	6.45	99.8	7.94	0.12	0.004	0.005	0.007	0.008	0.149	1.96	7.6	1.0
	標準偏差	1.3	0.45	0.04	1.7	0.06	0.20	0.007	0.012	0.002	0.002	0.012	0.16	2.4	0.6
	平均值	30.0	29.45	6.32	98.4	7.97	0.28	0.207	0.033	0.015	0.064	0.341	2.15	11.6	1.3
	最高值	31.5	31.00	6.64	103.6	8.06	0.56	1.569	0.095	0.040	0.410	1.320	2.54	18.1	2.1
	最低值	28.6	24.02	5.30	81.2	7.82	0.12	0.004	0.005	0.007	0.008	0.149	1.77	7.6	0.5

三、浮游動物部份:

在近岸 10 米及離岸 20 米之水平及垂直採樣中,每單位水體積中之平均個體數(豐度),呈現 20 米垂直(20V)採樣高於近岸 10 米或離岸 20 米水平採樣(10S 和 20S)的現象。近岸與離岸水平採樣豐度之比較,所有測線均為近岸較高 (表 2.10.1-4~6)。各測站標本中的雜質含量,在 10 米及 20 米測站的水平採樣中雜質含的量介於10.0~55.5%之間,在 20 米測站垂直採樣中,雜質含量介於25.0~40.0%,由於含雜質量的變動範圍大 (由 10.0~55.5%不等),且測線 5 因靠近濁水溪,水中懸浮砂礫較多,導致雜質含量比例經常偏高,因此若用濕重、乾重、排水容積量以及沈澱量等測值進行不同測站間的比較,會有較大的誤差 (表 2.10.1-4~6,圖 2.10.1-2~4),故在長期監測上仍採用以目測計數所得的豐度值做比較。

本年度第3季(114年7月)最低豐度值出現在11-20V測站(1.6×10^3 個/ $1000\,\mathrm{m}^3$),而最高豐度值則出現於5-20V測站($1,640.2\times10^3$ 個/ $1000\,\mathrm{m}^3$)(圖2.10.1-5);各測線的平均豐度值,以測線11最少,測線5最高,介於86.2~890.6× 10^3 個/ $1000\,\mathrm{m}^3$ 。由於浮游動物在自然海域環境中,會呈現斑叢狀分佈(Patchiness),因此會造成不同測站間豐度值很大的變異(圖2.10.1-2~4,圖2.10.1-5)。

在10米水平採樣,魚卵出現的百分率為20.86%,其次依序為夜光蟲(17.74%)、哲水蚤(16.25%)、藤壺幼生(14.59%)、蟹幼生(11.06%)及蝦幼生7.29%);在20米水平採樣中,夜光蟲出現的百分率為30.88%,其次依序為哲水蚤(24.93%)、魚卵(8.91%)、棘皮動物幼生(7.88%)、蝦幼生(6.52%)及水母(5.12%);在20米垂直採樣中,棘皮動物幼生出現的百分率為33.73%,其次依序為哲水蚤(21.49%)和夜光蟲(15.72%)及蝦幼生(7.77%),而其他大類的豐度均低於5%(表2.10.1-4~6,圖2.10.1-6)。

經濟性蝦蟹幼生在本季出現的總平均豐度為 72.3×10^3 個/ $1000~m^3$,測線間的平均豐度範圍為 $9.6\sim101.6\times10^3$ 個/ $1000~m^3$,測線 11 最低,測線 5 最高。近離岸水平採樣的總平均豐度為近岸較高,分別為 123.8 和 18.8×10^3 個/ $1000~m^3$,而離岸垂直採樣高於離岸水平採樣,離岸垂直總平均豐度值為 75.0×10^3 個/ $1000~m^3$ (表 $2.10.1-4\sim6$,圖 2.10.1-7)。

魚卵和仔魚在本季出現的總平均豐度為 62.2×10³ 個/1000m³,測線間的平均豐度介於 14.5~110.1×10³ 個/1000 m³,測線 11 最低,測線 9 最高。近岸的總平均豐度測值高於離岸水平採樣,分別為 142.9

和 16.3×10^3 個/1000 m³,而離岸垂直採樣高於水平採樣,其平均豐度 值為 28.1×10^3 個/1000 m³ (表 2.10.1-4~6,圖 2.10.1-7)。本季所有測 線均有採集到魚卵和仔魚。

表 2.10.1-2 民國 114 年 7 月 17 日雲林縣台西鄉沿海 10 米水深表層浮游動物之豐度(ind./1000 m³)及生物量

Station	5-10S	7-10S	9-10S	11-10S	Mean	S.D.	%
Category							
Noctiluca 夜光蟲	69,121	55,558	302,656	51,101	119,609	122,272	17.74
Foraminifera 有孔蟲	342	0	0	0	86	171	0.01
Radiolaria 放射蟲	0	0	0	0	0	0	0.00
Medusa 水母	21,900	37,370	16,479	949	19,174	15,033	2.84
Siphonophore 管水母	7,528	2,842	2,197	1,627	3,548	2,699	0.53
Ctenophora 櫛水母	342	0	0	0	86	171	0.01
Pteropoda 翼足類	0	0	0	0	0	0	0.00
Heteropoda 異足類	2,395	142	1,099	136	943	1,069	0.14
Cephalopoda larvae 頭足類幼生	0	0	0	0	0	0	0.00
Bivalvia larvae 二枚貝	5,817	853	549	203	1,856	2,654	0.28
Polychaeta 多毛類	1,711	1,989	0	68	942	1,055	0.14
Cladocera 枝角類	0	0	0	0	0	0	0.00
Ostracoda 介形類	684	0	0	0	171	342	0.03
Calanoida 哲水蚤	211,127	42,202	164,236	20,806	109,593	92,592	16.25
Harpacticoida 猛水蚤	0	142	0	0	36	71	0.01
Cyclopoida 劍水蚤	16,083	1,705	3,845	4,066	6,425	6,526	0.95
Copepoda nauplius 橈足類幼生	0	142	549	136	207	238	0.03
Barnacle nauplius 藤壺幼生	18,820	36,944	337,811	0	98,394	160,322	14.59
Mysidacea 糠蝦類	0	0	0	0	0	0	0.00
Amphipoda 端腳類	1,369	142	0	68	395	652	0.06
Euphausiacea 磷蝦類	0	0	0	0	0	0	0.00
Sergestidae 櫻蝦類	0	284	0	0	71	142	0.01
Luciferinae 瑩蝦類	684	568	0	0	313	365	0.05
Shrimp larvae 蝦幼生	33,534	64,936	90,083	8,065	49,155	35,854	7.29
Crab larvae 蟹幼生	114,973	78,577	97,224	7,658	74,608	47,042	11.06
Crab megalopa 大眼幼生	0	142	0	0	36	71	0.01
Other Decapoda 其他十足目	0	0	0	0	0	0	0.00
Chaetognatha 毛顎類	56,802	4,405	14,831	610	19,162	25,804	2.84
Appendicularia 尾蟲類	1,027	3,268	10,986	68	3,837	4,951	0.57
Thaliacae 海桶類	0	0	0	0	0	0	0.00
Echinodermata larvae 棘皮動物幼	52,696	8,952	4,394	11,318	19,340	22,422	2.87
Fish egg 魚卵	200,177	29,839	301,558	31,175	140,687	133,789	20.86
Fish larvae 仔魚	1,711	2,700	4,394	136	2,235	1,785	0.33
Other 其他	5,817	1,137	6,591	203	3,437	3,233	0.51
TOTAL	824,660	374,841	1,359,482	138,392	674,343	538,193	100
BIOMASS:							
Wet wt.($g/1000 \text{ m}^3$)	3.81	2.56	4.86	3.76	3.75	0.94	
Dry wt.(g/1000m ³)	0.00	0.04	0.15	0.41	0.15	0.18	
Displa.V.(ml/1000m ³)	10.69	8.88	8.58	8.47	9.16	1.04	
Settling V.(ml/1000m ³)	32.08	21.31	20.60	15.25	22.31	7.05	
Impurity(%)	26.6	25.0	33.3	55.5	35.10	14.07	

表 2.10.1-3 ..民國 114 年 7 月 17 日雲林縣台西鄉沿海 20 米水深表層浮游動物之豐度(ind./1000 m³)及生物量

Station	5-20S	7-20S	9-20S	11-20S	Mean	S.D.	%
Category							
Noctiluca 夜光蟲	27,119	103,642	52,268	32,091	53,780	34,975	30.88
Foraminifera 有孔蟲	0	197	172	0	92	107	0.05
Radiolaria 放射蟲	0	0	0	0	0	0	0.00
Medusa 水母	28,066	4,606	2,230	801	8,926	12,856	5.12
Siphonophore 管水母	1,531	2,435	1,544	3,868	2,344	1,100	1.35
Ctenophora 櫛水母	0	0	0	0	0	0	0.00
Pteropoda 翼足類	0	0	0	70	17	35	0.01
Heteropoda 異足類	1,750	197	229	592	692	727	0.40
Cephalopoda larvae 頭足類幼生	0	0	0	0	0	0	0.00
Bivalvia larvae 二枚貝	73	0	629	383	271	291	0.16
Polychaeta 多毛類	1,677	263	57	314	578	741	0.33
Cladocera 枝角類	0	0	0	70	17	35	0.01
Ostracoda 介形類	73	66	343	2,091	643	974	0.37
Calanoida 哲水蚤	47,749	50,669	45,291	29,966	43,419	9,234	24.93
Harpacticoida 猛水蚤	0	0	0	35	9	17	0.01
Cyclopoida 劍水蚤	1,385	5,462	4,518	9,338	5,176	3,277	2.97
Copepoda nauplius 橈足類幼生	0	66	57	0	31	36	0.02
Barnacle nauplius 藤壺幼生	5,759	2,764	8,006	2,335	4,716	2,671	2.71
Mysidacea 糠蝦類	0	0	0	0	0	0	0.00
Amphipoda 端腳類	0	197	172	70	110	92	0.06
Euphausiacea 磷蝦類	0	0	0	0	0	0	0.00
Sergestidae 櫻蝦類	656	132	172	0	240	287	0.14
Luciferinae 瑩蝦類	510	395	400	35	335	207	0.19
Shrimp larvae 蝦幼生	17,204	5,396	12,695	10,105	11,350	4,936	6.52
Crab larvae 蟹幼生	22,380	1,448	2,802	2,962	7,398	10,011	4.25
Crab megalopa 大眼幼生	0	0	0	0	0	0	0.00
Other Decapoda 其他十足目	0	0	0	0	0	0	0.00
Chaetognatha 毛顎類	8,456	921	1,544	1,498	3,105	3,579	1.78
Appendicularia 尾蟲類	510	1,645	515	139	702	653	0.40
Thaliacae 海桶類	0	132	57	0	47	62	0.03
Echinodermata larvae 棘皮動物幼	6,853	16,912	21,731	9,408	13,726	6,834	7.88
Fish egg 魚卵	33,607	8,357	8,120	11,986	15,518	12,189	8.91
Fish larvae 仔魚	1,239	132	1,258	314	736	597	0.42
Other 其他	364	132	286	35	204	149	0.12
TOTAL	206,962	206,165	165,096	118,504	174,182	41,952	100
BIOMASS:							
Wet wt.($g/1000 \text{ m}^3$)	4.30	3.96	3.37	8.26	4.97	2.22	
Dry wt.(g/1000m ³)	0.00	0.16	0.16	0.44	0.19	0.18	
Displa.V.(ml/1000m ³)	9.11	8.23	7.15	17.42	10.48	4.70	
Settling V.(ml/1000m ³)	25.51	16.45	14.30	27.88	21.03	6.67	
Impurity(%)	28.5	20.0	10.0	25.0	20.88	8.05	

表 2.10.1-4 民國 114 年 7 月 17 日雲林縣台西鄉沿海 20 米水深垂直浮游動物之豐度 (ind./1000 m³)及生物量

Station	5-20V	7-20V	9-20V	11-20V	Mean	S.D.	%
Category			40.400				
Noctiluca 夜光蟲	319,217	163,012	40,420	0	130,662	143,545	15.72
Foraminifera 有孔蟲	9,673	3,105	2,994	411	4,046	3,953	0.49
Radiolaria 放射蟲	0	776	0	0	194	388	0.02
Medusa 水母	77,386	28,721	13,473	0	29,895	33,765	3.60
Siphonophore 管水母	24,720	29,497	9,357	0	15,894	13,642	1.91
Ctenophora 櫛水母	0	0	0	0	0	0	0.00
Pteropoda 異足類	0	0	374	0	94	187	0.01
Heteropoda 異足類	2,150	776	1,871	0	1,199	995	0.14
Cephalopoda larvae 頭足類幼生	0	0	0	0	0	0	0.00
Bivalvia larvae 二枚貝	1,075	2,329	0	0	851	1,108	0.10
Polychaeta 多毛類	7,524	1,552	1,123	0	2,550	3,380	0.31
Cladocera 枝角類	0	0	0	0	0	0	0.00
Ostracoda 介形類	1,075	3,105	374	0	1,139	1,385	0.14
Calanoida 哲水蚤	386,929	256,162	71,110	411	178,653	175,805	21.49
Harpacticoida 猛水蚤	0	776	0	0	194	388	0.02
Cyclopoida 劍水蚤	63,413	28,721	17,216	0	27,338	26,790	3.29
Copepoda nauplius 橈足類幼生	0	776	0	0	194	388	0.02
Barnacle nauplius 藤壺幼生	51,591	73,743	7,485	0	33,205	35,334	4.00
Mysidacea 糠蝦類	0	0	0	0	0	0	0.00
Amphipoda 端腳類	5,374	2,329	749	0	2,113	2,381	0.25
Euphausiacea 磷蝦類	0	0	0	0	0	0	0.00
Sergestidae 櫻蝦類	3,224	5,434	0	0	2,165	2,657	0.26
Luciferinae 瑩蝦類	4,299	776	0	0	1,269	2,053	0.15
Shrimp larvae 蝦幼生	94,583	121,095	42,666	0	64,586	53,990	7.77
Crab larvae 蟹幼生	22,571	14,749	4,117	0	10,359	10,242	1.25
Crab megalopa 大眼幼生	0	0	0	0	0	0	0.00
Other Decapoda 其他十足目	0	0	0	0	0	0	0.00
Chaetognatha 毛顎類	23,646	22,511	4,491	0	12,662	12,176	1.52
Appendicularia 尾蟲類	3,224	0	1,497	0	1,180	1,535	0.14
Thaliacae 海桶類	0	2,329	0	0	582	1,164	0.07
Echinodermata larvae 棘皮動物幼	473,989	501,456	145,214	822	280,370	246,834	33.73
Fish egg 魚卵	51,591	13,972	8,608	0	18,543	22,771	2.23
Fish larvae 仔魚	8,598	23,287	6,362	0	9,562	9,849	1.15
Other 其他	4,299	1,552	749	0	1,650	1,876	0.20
TOTAL	1,640,151	1,302,543	380,250	1,644	831,147	767,699	100
BIOMASS:							
Wet wt.($g/1000 \text{ m}^3$)	53.74	62.88	10.85	6.58	33.51	28.93	
Dry wt.(g/1000m ³)	0.00	0.00	0.00	0.00	0.00	0.00	
Displa.V.(ml/1000m ³)	268.70	388.12	74.85	82.19	203.47	152.32	
Settling V.(ml/1000m ³)	268.70	621.00	112.28	82.19	271.04	247.21	
Impurity(%)	40.0	25.0	33.3	33.3	32.90	6.14	

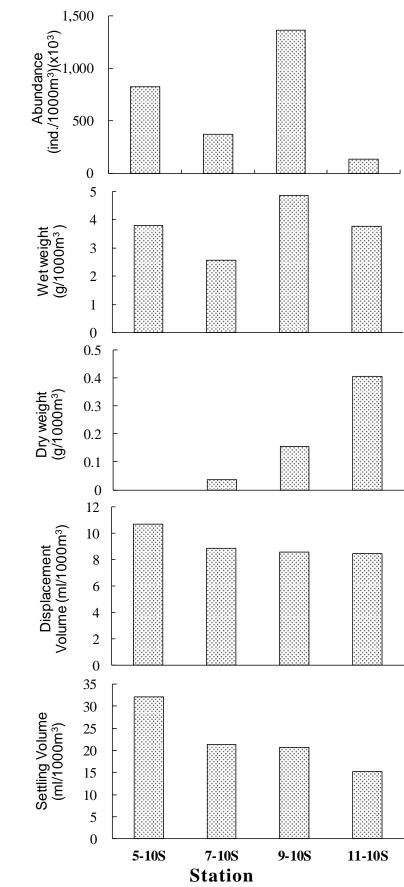


圖 2.10.1-1 民國 114 年 7 月 17 日雲林縣台西鄉 10 米水深表層各測站中浮游動物之豐度及生物量的變化圖

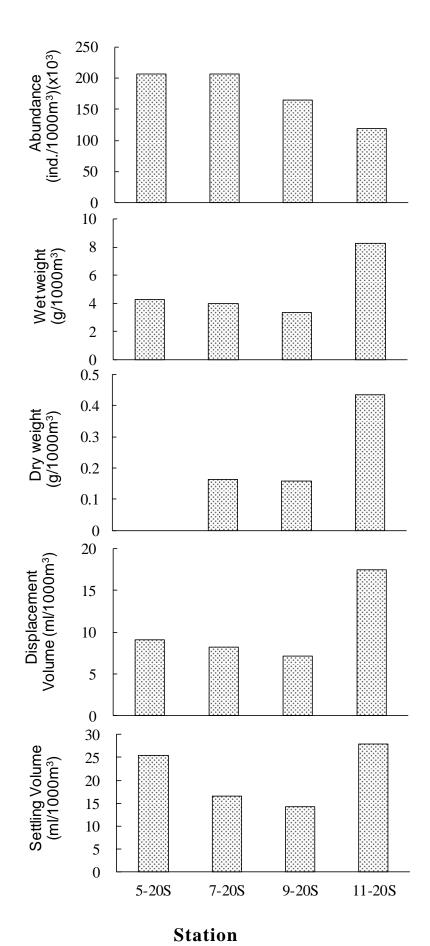


圖 2.10.1-2 民國 114 年 7 月 17 日雲林縣台西鄉 20 米水深表層各測站中浮游動物之豐度及生物量的變化圖

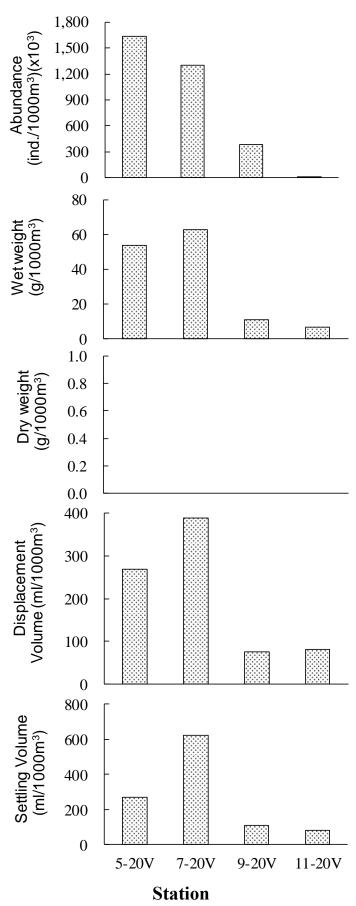


圖 2.10.1-3 民國 114 年 7 月 17 日雲林縣台西鄉 20 米水深垂直各測站中浮游動物之豐度及生物量的變化圖

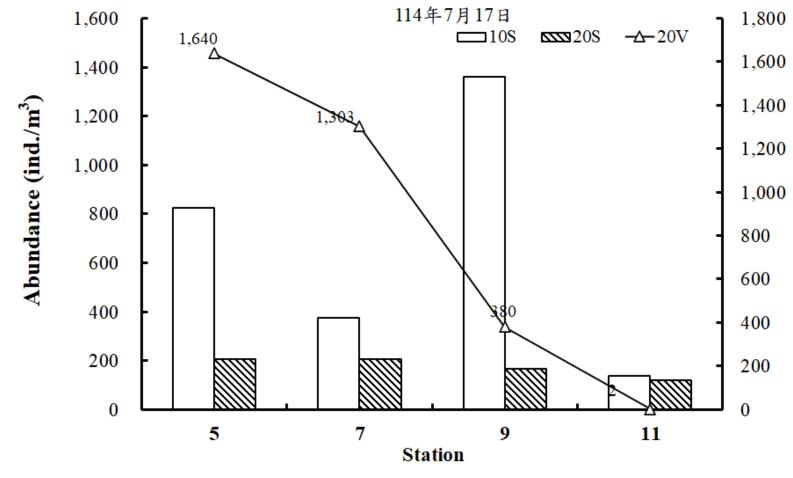


圖 2.10.1-4 民國 114 年 7 月 17 日雲林縣台西鄉沿海各測線中浮游動物之豐度變化 (第一縱軸為 10 米和 20 米水平採樣,第二縱軸為 20 米垂直採樣)



圖 2.10.1-5 民國 114 年 7 月 17 日雲林縣台西鄉沿海各測站浮游動物之出現百分率

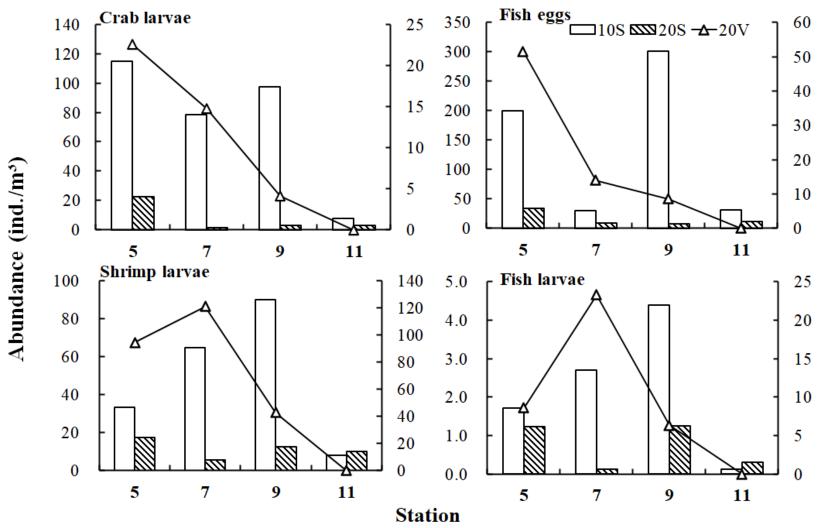


圖 2.10.1-6 民國 114 年 7 月 17 日雲林縣台西鄉沿海各測線蟹幼生、蝦幼生、魚卵和仔稚魚之豐度變化(第一縱軸為 10 米和 20 米水平採樣,第二縱軸為 20 米垂直採樣)

四、浮游植物部份:

114年第3季所採得水樣中各測站之藻類組成雖有差異,但基本上包含矽藻大類。本季以矽藻類為優勢大類,佔總藻類組成的98.37%,其他還有渦鞭毛藻類佔0.78%和藍綠藻類佔0.82%。在本季共出現39種矽藻,各測站中的矽藻種類以9-20的28種為最多,11-10測站的19種為最少。本季最優勢藻種為布氏雙尾藻(Ditylum brightwellii)出現百分率為28.07%,其次還有活動盒形藻(Biddulphia mobiliensis)佔19.90%、洛氏角刺藻(Chaetoceros lorenzianus)佔10.96%、擬彎角刺藻(Chaetoceros pseudocurvisetus)佔9.13%及離心列圓篩藻(Coscinodiscus eccentricus)佔7.14%,其餘藻種的出現百分率均小於5%(表2.10.1-2~3)。

比較近岸 10 米及離岸 20 米之水平採樣中,每單位水體積中之個體數(密度)的差異,測線 5 和 11 為近岸較高,測線 7 和 9 為離岸較高,近離岸總平均值分別為 3.78 及 $3.73 \times 10^3 \text{cells/l}$ (表 $2.10.1-2\sim3$,圖 2.10.1-1)。本季藻類各測站密度範圍介於 $1.32\sim7.05\times10^3 \text{cells/l}$,總平均密度為 $3.76\times10^3 \text{cells/l}$,最低值出現在 11-20 測站,最高值在 5-10 測站;各測線平均豐度值,以測線 11 為最低($2.37\times10^3 \text{cells/l}$),測線 5 最高 ($7.00\times10^3 \text{cells/l}$)。

五、電廠溫排水影響

自民國 89 年起,由本研究同步採樣的水質數據得知,當水溫高於 30℃,浮游動物之豐度便無高值,海水 pH 值低於 7.8 時,浮游動物之豐度和浮游植物之密度亦無高值出現。本季海水水溫均低於 30℃,所有測站海水 pH 值均 ≥ 7.8 的情形。在 pH 和水溫與浮游生物豐度和密度的點圖中,測線 5 與其他測線採樣的浮游動物測值相近,並無異狀(圖 2.10.1-8~9)。

表 2.10.1-5 民國 114 年 7 月 17 日雲林縣台西鄉沿海沿海 10 米水深表層浮游植物之種類組成及密度(cells/L)

Station	5-10S	7-10S	9-10S	11-10S	Mean	S.D.	%
Category							
矽藻類 Alexandrium tarmarense 塔瑪藻	30	0	0	0	8	15	0.20
Asterionella japonica 日本星桿藻	210	100	130	120	140	48	3.70
Bacteriastrum comosum 平凡輻桿藻	15	0	0	10	6	8	0.17
Bellerochea malleus 錘狀中鼓藻	45	10	20	30	26	15	0.17
Biddulphia mobiliensis 活動盒形藻	1,530	350	360	970	803	565	21.23
Cerataulina bergonii 古柏角管藻	1,550	330	0	0	4	8	0.10
Chaetoceros atlanticus 大西洋角刺藻	0	0	0	0	0	0	0.10
Chaetoceros coarctatus 密聚角刺藻	0	0	30	0	8	15	0.00
	0	20	10	20	13	10	0.20
Chaetoceros compressus 扁面角刺藻	15	20	30	60	31	20	0.83
Chaetoceros decipiens 並基角刺藻							
Chaetoceros diversus 異角角刺藻	0	0	0	0	0	0	0.00
Chaetoceros lauderi Ralfs 羅氏角刺藻	15	0	0	0	4	8	0.10
Chaetoceros lorenzianus 洛氏角刺藻	855	30	0	40	231	416	6.12
Chaetoceros pseudocurvisetus 擬彎角刺藻	660	180	190	270	325	227	8.60
Coscinodiscus eccentricus 離心列圓篩藻	435	240	290	160	281	116	7.44
Coscinodiscus radiatus 輻射圓篩藻	30	0	0	0	8	15	0.20
Ditylum brightwellii 布氏雙尾藻	1,770	870	730	980	1,088	466	28.77
Eucampia zodiacus 浮動彎角藻	45	10	0	10	16	20	0.43
Fragilaria cylindrus 柱狀脆桿藻	345	70	90	0	126	151	3.34
Guinardia delicatula 柔弱幾內亞藻	120	50	40	60	68	36	1.79
Guinardia striata 斯托幾內亞藻	135	10	40	80	66	54	1.75
Hemiaulus hauckii 霍克半管藻	0	10	30	0	10	14	0.26
Hemiaulus indicus 印度半管藻	0	0	0	0	0	0	0.00
Hemiaulus sinensis 中華半管藻	0	0	0	20	5	10	0.13
Lauderia annulata 北方勞德藻	0	0	0	40	10	20	0.26
Leptocylindrus danicus 丹麥細柱藻	15	30	20	0	16	13	0.43
Melosira moniliformis 念珠直鏈藻	285	70	30	240	156	125	4.13
Melosira nummuloides 擬銀幣直鏈藻	0	0	20	0	5	10	0.13
Navicula cryptocephala 隱頭舟形藻	30	10	0	10	13	13	0.33
Nitzschia palea 谷皮菱形藻	0	0	0	0	0	0	0.00
Odontella aurita 長耳盒形藻	345	90	210	180	206	106	5.46
Pleurosigma normanii 中斜紋藻	15	0	0	0	4	8	0.10
Rhizosolenia setigera 剛毛根管藻	30	0	10	0	10	14	0.26
Rhizosolenia styliformis 筆尖根管藻	15	10	0	0	6	8	0.17
Skeletonema costatum 骨條藻	0	0	10	0	3	5	0.07
Streptotheca indica 印度扭鞘藻	30	0	10	60	25	26	0.66
Streptotheca thamensis 扭鞘藻	0	20	0	0	5	10	0.13
Thalassionema frauenfeldii 伏恩海線藻	0	0	0	0	0	0	0.00
Thalassionema nitzschioides 菱形海線藻	0	0	10	0	3	5	0.07
渦鞭毛藻類							
Ceratium trichoceros 三叉角藻	0	0	0	0	0	0	0.00
Peridinium steinii 斯氏多甲藻	0	0	40	40	20	23	0.53
Protoperidinium conicum 圓錐多角藻	0	0	10	0	3	5	0.07
Tripos fusus 梭角藻	0	0	0	0	0	0	0.00
藍綠藻類							
Limnospira platensis 鈍頂螺旋藻	0	50	10	0	15	24	0.40
Trichodesmium erythraeum 紅海東毛藻	0	10	0	0	3	5	0.07
Trichodesmium hildebrandtii 漢氏束毛藻	15	10	0	20	11	9	0.30
綠藻類							
Pediastrum sp. 盤星藻	0	10	0	0	3	5	0.07
總合	7,050	2,280	2,370	3,420	3,780		100

表 2.10.1-6 民國 114 年 7 月 17 日雲林縣台西鄉沿海沿海 20 米水深表層浮游植物之種類組成及密度(cells/L)

Station	5-20S	7-20S	9-20S	11-20S	Mean	S.D.	%
Category						~	
Alexandrium tarmarense 塔瑪藻	0	0	0	0	0	0	0.00
Asterionella japonica 日本星桿藻	75	70	100	35	70	27	1.87
Bacteriastrum comosum 平凡輻桿藻	0	0	10	10	5	6	0.13
Bellerochea malleus 錘狀中鼓藻	75	60	60	25	55	21	1.47
Biddulphia mobiliensis 活動盒形藻	1,150	550	830	240	693	389	18.55
Cerataulina bergonii 古柏角管藻	0	30	0	0	8	15	0.20
Chaetoceros atlanticus 大西洋角刺藻	0	10	10	0	5	6	0.13
Chaetoceros coarctatus 密聚角刺藻	0	10	0	0	3	5	0.07
Chaetoceros compressus 扁面角刺藻	0	0	20	5	6	9	0.17
Chaetoceros decipiens 並基角刺藻	25	20	40	20	26	9	0.70
Chaetoceros diversus 異角角刺藻	0	0	20	0	5	10	0.13
Chaetoceros lauderi Ralfs 羅氏角刺藻	0	0	0	0	0	0	0.00
Chaetoceros lorenzianus 洛氏角刺藻	2,250	10	60	50	593	1,105	15.87
Chaetoceros pseudocurvisetus 擬彎角刺藻		270	540	160	361	177	9.68
Coscinodiscus eccentricus 離心列圓篩藻	525	270	150	75	255	197	6.83
Coscinodiscus radiatus 輻射圓篩藻	0	0	0	0	0	0	0.00
Ditylum brightwellii 布氏雙尾藻	1,400	1,120	1,130	435	1,021	412	27.35
Eucampia zodiacus 浮動彎角藻	25	40	70	0	34	29	0.90
Fragilaria cylindrus 柱狀脆桿藻	225	0	30	5	65	107	1.74
Guinardia delicatula 柔弱幾內亞藻	0	50	30	20	25	21	0.67
Guinardia striata 斯托幾內亞藻	100	30	120	25	69	48	1.84
Hemiaulus hauckii 霍克半管藻	25	0	20	0	11	13	0.30
Hemiaulus indicus 印度半管藻	50	0	0	0	13	25	0.33
Hemiaulus sinensis 中華半管藻	25	0	0	5	8	12	0.20
Lauderia annulata 北方勞德藻	25	10	10	0	11	10	0.30
Leptocylindrus danicus 丹麥細柱藻	50	20	60	5	34	26	0.90
Melosira moniliformis 念珠直鏈藻	125	150	130	75	120	32	3.21
Melosira nummuloides 擬銀幣直鏈藻	0	0	0	0	0	0	0.00
Navicula cryptocephala 隱頭舟形藻	25	10	10	0	11	10	0.30
Nitzschia palea 谷皮菱形藻	0	0	10	0	3	5	0.07
Odontella aurita 長耳盒形藻	250	170	40	55	129	100	3.45
Pleurosigma normanii 中斜紋藻	0	0	0	5	1	3	0.03
Rhizosolenia setigera 剛毛根管藻	0	0	10	5	4	5	0.10
Rhizosolenia styliformis 筆尖根管藻	0	10	10	0	5	6	0.13
Skeletonema costatum 骨條藻	0	0	0	0	0	0	0.00
Streptotheca indica 印度扭鞘藻	25	10	10	5	13	9	0.33
Streptotheca thanca 可及扭轴深 Streptotheca thanensis 扭鞘藻	0	0	0	0	0	0	0.00
Thalassionema frauenfeldii 伏恩海線藻	0	0	10	5	4	5	0.00
Thalassionema nitzschioides 菱形海線藻	0	0	10	0	3	5	0.10
渦鞭毛藻類	U	U	10	U	3	3	0.07
Ceratium trichoceros 三叉角藻	0	0	10	0	3	5	0.07
Peridinium steinii 斯氏多甲藻	0	50	50	15	29	25	0.07
Protoperidinium conicum 圓錐多角藻					3		
	0	0	10 10	0	3	5 5	0.07
Tripos fusus 梭角藻 藍綠藻類	0	0	10	0	3	3	0.07
Limnospira platensis 鈍頂螺旋藻	0	0	0	0	0	0	0.00
Trichodesmium erythraeum 紅海東毛藻	0	0	0	0	0	0	0.00
Trichodesmium hildebrandtii 漢氏束毛藻	25	70	0	35	33	29	0.87
綠藻類							
Pediastrum sp. 盤星藻	0	0	0	0	0	0	0.00
總合	6,950	3,040	3,630	1,315	3,734	2,358	100

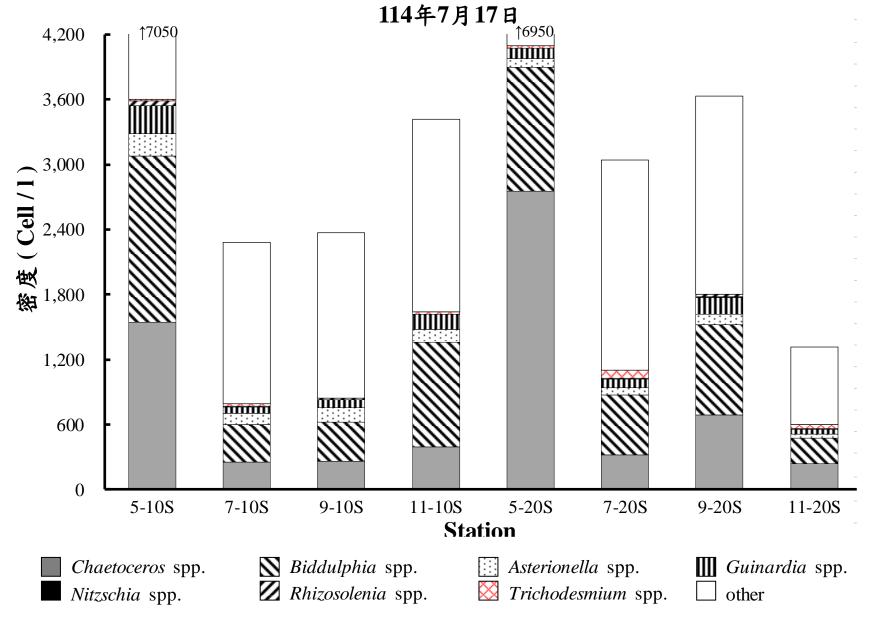


圖 2.10.1-7 民國 114年7月 17日雲林縣台西鄉沿海各測站中浮游植物之主要種類組成及密度之變化圖

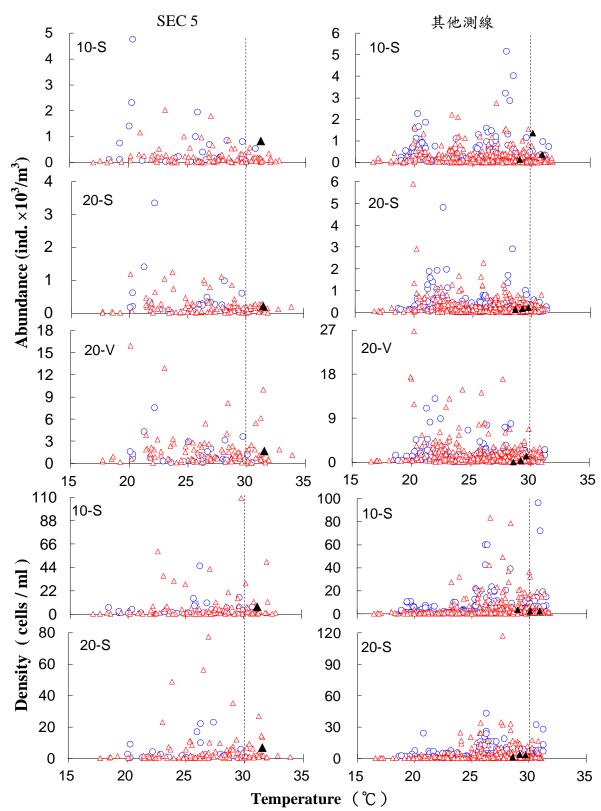


圖 2.10.1-8 歷年海域中之浮游動物豐度和浮游植物密度與溫度之點圖 (○:民國 89 年以前;△:民國 89 年以後;▲:本季)

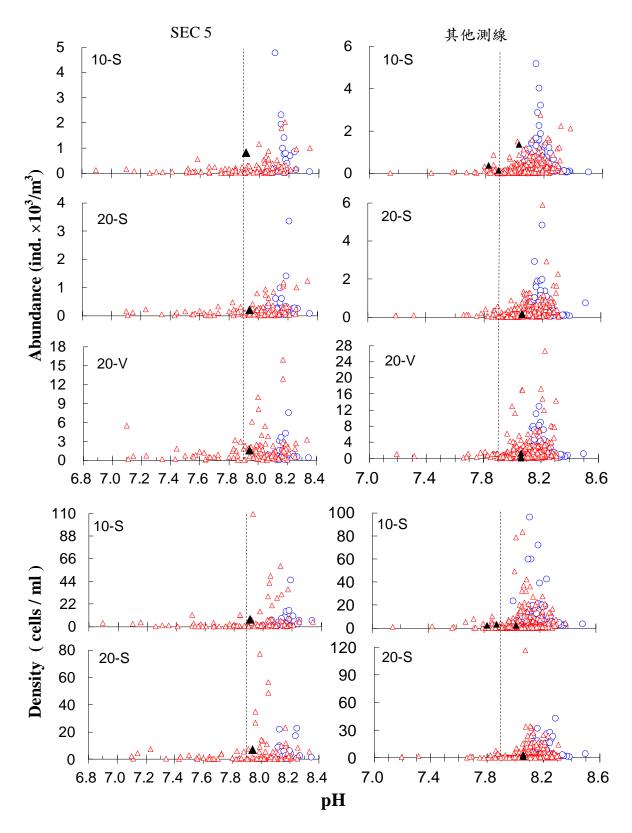


圖 2.10.1-9 歷年海域中之浮游動物豐度和浮游植物密度與 pH 之點圖 (○:民國 89 年以前;△:民國 89 年以後;▲:本季)

2.10.2 亞潮帶底棲生物調查

一、本季亞潮帶部分:

本季(7月17日)亞潮帶調查的物種,包含星蟲綱(2科)、有針綱(1科)、多毛綱(10科)、海膽綱(1科)、蛇尾綱(1科)、雙殼綱(9科)、掘足綱(1科)、腹足綱(7科)、頭足綱(1科)、軟甲綱(18科)與硬骨魚綱(5科),共計56科(表2.10.2-1)。其中各測站出現科數介於15~34科間,以9-10測站的34科為最高,而5-10測站的15科為最低(圖2.10.2-1)。

本季的總平均豐度為 3,346 ind./1000 m²,總平均生物量為 209 g/1000 m²。豐度和生物量皆以 9-10 測站(8,148 ind./1000 m²、481 g/1000 m²)為最高。豐度以 11-10 測站(472 ind./1000 m²)為最低,而生物量則以 9-20 測站(31 g/1000 m²)為最低 (表 2.10.2-1、圖 2.10.2-3)。

豐度上的優勢大類為雙殼綱,佔 53.5%,其次為軟甲綱,佔 21.4%(表 2.10.2-1)。其中以櫻蛤科的平均豐度為最高 $(1,242\ ind./1000\ m^2 \times 40.0\%)$,次之為活額寄居蟹科 $(466\ ind./1000\ m^2 \times 13.9\%)$ 、抱蛤科 $(353\ ind./1000\ m^2 \times 10.5\%)$ 、鐘螺科 $(335\ ind./1000\ m^2 \times 10.0\%)$ 和纖紋螺科 $(275\ ind./1000\ m^2 \times 8.2\%)$,前五優勢科合計佔 79.8%。生物量之最優勢大類同樣為雙殼綱,佔 51.5%,軟甲綱的 21.1%和腹足綱的 19.3%次之(表 2.10.2-1)。生物量的最優勢科為抱蛤科 $(40.6\ g/1000\ m^2 \times 19.4\%)$,次之依序為櫻蛤科 $(40.0\ g/1000\ m^2 \times 19.1\%)$ 、活額寄居蟹科 $(25.9\ g/1000\ m^2 \times 12.4\%)$ 、織紋螺科 $(25.3\ g/1000\ m^2 \times 12.1\%)$ 和馬珂蛤科 $(18.9\ g/1000\ m^2 \times 9.0\%)$ 。前五生物量優勢科合計佔 72.2%。

本季各測站底棲無脊椎動物的多樣性指標中,豐富度在3.36~6.82之間,均勻度介於0.96~0.99,岐異度在2.64~3.45之間。豐富度和歧異度以9-10測站最高,5-10測站最低;均勻度以9-20測站最高,7-10測站為最低(表2.10.2-1)。

在測站間的相似度分析結果中,發現相似度最高的為 5-10 與 5-20 測站,有 76.9%的相似度,次之為 9-20 與 11-20 測站(69.9%)、7-10 與 9-10 測站(64.9%)及 5-10 與 9-20 測站(64.6%),相似度最低的是 7-10 及 7-20 測站,僅 22.7%,其餘測站相似度在 27.4~60.7%之間(表 2.10.2-2)。

二、與歷年比較:

本季的總平均豐度 3,346 ind./1000 m²,總平均生物量 209 g/1000 m² 高於歷年同季豐度平均值(2,663 ind./1000 m²),但低於生物量平均值(223 g/1000 m²)。歷年第 3 季的豐度及生物量平均值為歷年四季豐度及生物量中次高,次於最高的第 2 季(4,358 ind./1000 m² 和 427.6 g/1000 m²),高於第 4 季(2,020 ind./1000 m² 和 153.1 g/1000 m²),最低值為第 1 季(1,995 ind./1000 m² 和 137.8 g/1000 m²)。本季 5-10、7-10、9-10 和 5-20 測站的豐度有高於歷年同季同測站的豐度平均質,而生物量在 9-10、5-20、7-20 和 11-20 測站有高於歷年同季同測站的生物量平均值,其餘測站的測值則較歷年平均值為低,需要密切關觀察後續的變動情形。

表 2.10.2-1 民國 114 年第 3 季(7 月 17 日)離島產業園區海域亞潮帶各測站小型底棲動物豐度(A, ind./1000 m²)及生物量(B, g/1000 m²)。

Taxa		-	••	_	10	•	10			Stat		_	••	_	••		••		••	20.3	_		T		
Class	Family	5-1 A	10 R	7- A	10 B	9- A	10 B	11- A	-10 B	10-M A	lean B	5- A	20 R	7-: A	20 B	9-2 A	20 R	11: A	-20 B	20-N A	Aean B	A	Tot %	al B	%
Sipuncula	星蟲綱	А	ь	A	ь	А	ь	A	ь	А	ъ	A		A	ъ	A	ь	A	ь	A	ь	A	/0	ь	/0
-	unculidae 星蟲科			17.19	1.17	15.27	1.73			8.12	0.72							63.33	3.56	15.83	0.89	11.97	0.36	0.81	0.39
Pha	scolosomatidae 革囊星蟲科			206.32	34.85	213.82	20.88			105.04	13.93											52.52	1.57	6.97	3.33
Enopla 有	,,																								
	pla (紐形動物)			8.60	0.44	15.27	0.61			5.97	0.26							5.76	0.02	1.44	0.01	3.70	0.11	0.13	0.06
Polychaeta																									
Gly	ceridae 吻沙蠶科			25.79	0.21					6.45	0.05	13.47	0.09							3.37	0.02	4.91	0.15	0.04	0.02
-	htyidae 齒吻沙蠶科			51.58	0.75	22.91	0.06	3.58	0.21	19.52	0.26	13.47	0.24					11.51	0.64	6.25	0.22	12.88	0.38	0.24	0.11
	eididae 沙蠶科			8.60	0.06					2.15	0.01											1.07	0.03	0.01	0.00
Ont	uphidae 歐努菲蟲科			4.30		30.55	1.11			8.71	0.28											4.36	0.13	0.14	0.07
Opl	neliidae 海蛹科	13.15	0.25					3.58	0.02	4.18	0.07	6.73	0.01	26.67	0.22					8.35	0.06	6.27	0.19	0.06	0.03
Orb	iniidae 錐頭蟲科							3.58	0.02	0.89	0.01											0.45	0.01	0.00	0.00
Phy	llodocidae 葉鬚蟲科											6.73								1.68	0.00	0.84	0.03		
Siga	alionidae 錫鱗蟲科			4.30	0.37					1.07	0.09					14.62	0.03	23.03	0.19	9.41	0.05	5.24	0.16	0.07	0.03
Spi	onidae 海稚蟲科			12.89	0.09	91.64	0.15			26.13	0.06											13.07	0.39	0.03	0.01
Ten	ebellidae 蟄龍介科			30.09	0.59					7.52	0.15											3.76	0.11	0.07	0.04
Echinoidea	海膽綱																								
Cly	peasteroida 楯形目	39.45	0.21					107.35	1.05	36.70	0.32	13.47	0.09	17.78	0.13	29.24	0.18	63.33	0.74	30.95	0.29	33.83	1.01	0.30	0.14
Ophiuroide	ea 蛇尾綱																								
Am	phiuridae 陽燧足科			51.58	0.85	45.82	0.47			24.35	0.33					14.62	3.44	23.03	8.06	9.41	2.87	16.88	0.50	1.60	0.77
Bivalvia雙	- 殼綱																								
Arc	idae 魁蛤科			4.30	0.27	7.64	0.09			2.98	0.09											1.49	0.04	0.05	0.02
Cor	bulidae 抱蛤科			1547.39	96.05	1214.20	127.42			690.40	55.87			8.89	3.48			51.81	98.04	15.18	25.38	352.79	10.54	40.62	19.44
Cul	tellidae 刀蟶科	13.15	1.14	326.67	22.88	160.37	9.71			125.05	8.43	13.47	0.70							3.37	0.18	64.21	1.92	4.30	2.06
Gly	cymerididae 蚶蜊科							7.16	1.31	1.79	0.33											0.89	0.03	0.16	0.08
Mac	ctridae 馬珂蛤科	381.33	53.04	21.49	0.69	15.27	13.59	35.78	6.56	113.47	18.47	134.68	51.94	8.89	1.23	58.48	1.78	149.68	22.10	87.93	19.26	100.70	3.01	18.87	9.03
Nuc	culanidae 彎錦蛤科			30.09	2.34	30.55	2.91			15.16	1.31											7.58	0.23	0.66	0.31
Nuc	ulidae 銀錦蛤科					7.64	0.38	3.58	0.25	2.80	0.16			8.89	0.11					2.22	0.03	2.51	0.08	0.09	0.04
Tell	inidae 櫻蛤科	407.63	9.51	4091.98	149.13	3978.62	121.99	39.36	1.27	2129.40	70.47	363.64	6.98	8.89	0.21	292.40	6.33	754.17	24.52	354.77	9.51	1242.09	37.12	39.99	19.14
Ven	eridae 簾蛤科			21.49	8.45	22.91	4.93	35.78	2.97	20.05	4.09	13.47	1.85	26.67	3.55			23.03	0.78	15.79	1.54	17.92	0.54	2.81	1.35
Scaphopoo	da掘足綱																								
Den	italiidae 象牙貝科													8.89	0.13					2.22	0.03	1.11	0.03	0.02	0.01
Gastropod	a腹足綱																								
Col	umbellidae 麥螺科					7.64	0.07			1.91	0.02											0.95	0.03	0.01	0.00
Nas	sariidae 纖紋螺科	197.24	12.12	159.04	22.10	1191.29	115.77	35.78	1.92	395.84	37.98	127.95	7.84	8.89	0.54	131.58	11.39	345.42	30.79	153.46	12.64	274.65	8.21	25.31	12.11
Nat	icidae 玉螺科	13.15	0.30	34.39	35.95	68.73	8.21			29.07	11.11					14.62	0.23	5.76	0.07	5.09	0.08	17.08	0.51	5.60	2.68
Pate	ellidae 笠螺科													8.89	0.15					2.22	0.04	1.11	0.03	0.02	0.01
Ten	ebridae 筍螺科			12.89	0.98	76.37	1.30			22.31	0.57	6.73	0.08			14.62	0.04	23.03	0.29	11.10	0.10	16.71	0.50	0.34	0.16
Tro	chidae 鐘螺科	1604.21	43.39	8.60	0.62	7.64	0.15			405.11	11.04	1057.24	27.70							264.31	6.93	334.71	10.00	8.98	4.30
Tur	ridae 捲管螺科					15.27	0.18			3.82	0.05							40.30	0.34	10.07	0.08	6.95	0.21	0.07	0.03

表 2.10.2-1 民國 114 年第 3 季(7 月 17 日)離島產業園區海域亞潮帶各測站小型底棲動物豐度(A, ind./1000 m²)及生物量(B, g/1000 m²)(續 1)

Taxa											tion														
Class	Family		-10 D		-10 B	9-			l-10		Mean B	5-		7-1		9-2			-20		Mean B		To		0/
Cephalopo	da 商足細	A	В	A	ь	A	В	A	В	A	ь	A	В	A	В	A	В	A	В	A	ь	A	%	В	%
	iidae 烏賊科							3.58	6.86	0.89	1.71											0.45	0.01	0.86	0.41
Malacostra																									
	nacae 連蟲													8.89	0.25					2.22	0.06	1.11	0.03	0.03	0.0
	phipoda 端足目	26.30	0.20			53.46	0.01			19.94	0.05	289.56	0.21	8.89		292.40	0.18	5.76		149.15	0.10	84.54	2.53	0.07	0.04
	oda 等足目					30.55	0.40			7.64	0.10					29.24	0.01	5.76	0.01	8.75	0.01	8.19	0.24	0.05	0.0
Squi	illidae 蝦蛄科					7.64	0.60			1.91	0.15											0.95	0.03	0.07	0.0
	dea 真蝦總科					7.64	0.03			1.91	0.01											0.95	0.03	0.00	0.0
Crar	ngonidae 褐蝦科	13.15	0.43			7.64	0.01	7.16	0.25	6.99	0.17			17.78	0.18	14.62	0.15	5.76	0.07	9.54	0.10	8.26	0.25	0.14	0.0
Mys	idae 糠蝦					76.37	0.34	28.63	0.10	26.25	0.11	13.47	0.01			43.86	0.04	17.27	0.02	18.65	0.02	22.45	0.67	0.06	0.0
Ogy	rididae 長眼蝦科	13.15	0.95							3.29	0.24	6.73	0.01			14.62	0.28	17.27	0.26	9.66	0.14	6.47	0.19	0.19	0.0
-	phaeidae 玻璃蝦科					38.18	0.13	14.31	0.12	13.12	0.06							23.03	2.11	5.76	0.53	9.44	0.28	0.29	0.1
	aeidae 對蝦科	78.90	3.13			91.64	7.81	21.47	0.90	48.00	2.96	215.49	2.40	8.89	0.04	14.62	0.16	57.57	6.36	74.14	2.24	61.07	1.83	2.60	1.2
	gestidae 櫻蝦科	65.75	0.79	4.30	0.00			7.16	0.03	19.30	0.21	53.87	0.28	8.89		29.24	0.18	5.76		24.44	0.11	21.87	0.65	0.16	0.0
_	genidae 活額寄居蟹科	959.89	47.72	4.30	0.05	542.19	14.30	89.46	2.38	398.96	16.11	902.36	52.35	897.78	82.13	233,92	4.01	97.87	4.60	532.98	35.77	465.97	13.92	25.94	12.4
	pidae 蟬蟹科							7.16	1.59	1.79	0.40			8.89	0.45					2.22	0.11	2.01	0.06	0.26	0.1
	cosiidae 玉蟹科					15.27	2.41			3.82	0.60											1.91	0.06	0.30	0.1
	utidae 黎明蟹科	92.04	17.71	4.30	0.02			3.58	0.68	24.98	4.60	47.14	60.00					5.76	27.78	13.22	21.95	19.10	0.57	13.27	6.3
	otheridae 豆蟹科	,2.0.		4.30	0.09			5.50	0.00	1.07	0.02	.,	00.00					2.70	27.70	10122	2100	0.54	0.02	0.01	0.0
	unidae 梭子蟹科			8,60	5.66					2.15	1.41											1.07	0.03	0.71	0.3
	b larvae 蟹幼生			0.00	5.00					2.120		6.73	0.01							1.68	0.00	0.84	0.03	0.00	0.00
	es 硬骨魚綱											0.75	0.01							1.00	0.00	0.04	0.05	0.00	0.01
	ionymidae 鰤科							3.58	0.94	0.89	0.23					14.62	2.19	11.51	2.07	6.53	1.07	3.71	0.11	0.65	0.31
	oglossidae 舌鰨科					15.27	13.42	5.50	0.74	3.82	3.36					14.02	2.17	11.51	2.07	0.00	1.07	1.91	0.06	1.68	0.80
	ogiossidae 舌腳杆 ginidae 沙鮻科					15.27	0.21	10.74	1.43	6.50	0.41							17.27	1.18	4.32	0.30	5.41	0.16	0.35	0.17
	gindae 沙威杆 eidae 鰯科			8.60	12.73	7.64	10.10	10.74	1.43	4.06	5.71							17.27	1.10	4.32	0.50	2.03	0.16	2.85	1.3
	uae 廟科 Larvae 仔稚魚			8.00	12.73	7.04	10.10			4.00	3.71	6.73	0.01							1.68	0.00	0.84	0.03	0.00	0.00
Total indiv		3918.47	190.90	6713.95	397.38	8148.15	481.44	472.36	30.86	4813.23	275.15	3313.13	212.79	1093.33	92.81	1257.31	30.61	1853.77	234.60		142.70	3346.31	0.03	208.93	
	Species	15	190.90	28	397.30	34	401.44	21	30.00	50	2/3.13	21	212.79	17	92.01	17	30.01	26	234.00	38	142.70	56		200.93	
	cies Richness	3.36		28 5.99		6.82		5.00		10.05		4.61		4.16		3.88		5.62		38 8.07		50 11.36			
•	ou's Evenness	0.98		0.96		0.82		0.97		0.95		0.97		0.98		0.99		0.98		8.07 0.96		0.94			
	nnon-Wiener Index	2.64		3.21		3.45		2.97		3.72		2.95		2.78		2.79		3.19		3.49		3.78			
Sila	%	2.04		3.21		3.43		2.71		3.74		2.93		2.70		2.17		3.17		3.47		3.70			
Sinu	incula 星蟲綱			3.3	9.1	2.8	4.7			2.4	5.3							3.4	1.5	0.8	0.6	1.9		3.7	
-	pla 有針綱			0.1	0.1	0.2	0.1			0.1	0.1							0.3	0.0	0.1	0.0	0.1		0.1	
,		0.3	0.1	2.0	0.1	1.8	0.1	2.3	0.8	1.6	0.1	1.2	0.2	2.4	0.2	1.2	0.1	1.9	0.0	1.5	0.0	1.6		0.1	
	/chaeta 多毛綱	1.0	0.1	2.0	0.5	1.0	0.5	22.7	3.4	0.8	0.4	0.4	0.2	1.6	0.2	2.3	0.1	3.4	0.4		0.2	1.0			
	inoidea 海膽綱	1.0	0.1	0.0	0.2	0.6	0.1	22.1	3.4			0.4	0.0	1.0	0.1					1.6				0.1	
	niuroidea 蛇尾綱	20.5	22.4	0.8	0.2	0.6	0.1	25.0	40.0	0.5	0.1	15.0	20.0	5.7	0.2	1.2	11.2	1.2	3.4	0.5	2.0	0.5		0.8	
	dvia 雙殼綱	20.5	33.4	90.0	70.4	66.7	58.4	25.8	40.0	64.4	57.9	15.9	28.9	5.7	9.2	27.9	26.5	52.8	62.0	25.5	39.2	53.5		51.5	
	phopoda 掘足綱	4.5.5	20.7		4.5.6	160	24.4			4= 6		24.0		0.8	0.1	12.0	20.1	22.4	42.7	0.1	0.0	0.0		0.0	
	tropoda 腹足綱	46.3	29.2	3.2	15.0	16.8	26.1	7.6	6.2	17.8	22.1	36.0	16.7	1.6	0.7	12.8	38.1	22.4	13.4	23.7	13.9	19.5		19.3	
-	halopoda 頭足綱							0.8	22.2	0.0	0.6											0.0		0.4	
	acostraca 軟甲綱	31.9	37.2	0.4	1.5	10.7	5.4	37.9	19.6	12.1	9.9	46.3	54.2	87.8	89.5	53.5	16.3	13.0	17.6	45.4	42.8	21.4		21.1	
Oste	eichthyes 硬骨魚綱			0.1	3.2	0.5	4.9	3.0	7.7	0.3	3.5	0.2	0.0			1.2	7.2	1.6	1.4	0.7	1.0	0.4		2.6	

表 2.10.2-1 民國 114 年第 3 季(7 月 17 日)離島產業園區海域亞潮帶各測站小型底棲動物豐度(A, ind./1000 m²)及生物量(B, g/1000 m²)(續 2)

Taxa										Sta	ation														
CI	Б 1	5-	10	7-	-10	9-	10	11	-10	10-1	Mean	5-	20	7-	20	9-	20	11	-20	20-N	Jean		Total		
Class	Family	A	В	A	В	A	В	A	В	A	В	A	В	A	В	A	В	A	В	A	В	A	%	В	%
	Family																								
Sipuncula 4	星蟲綱			2	2	2	2			2	2							1	1	1	1	2		2	
Enopla 有金	針綱			1	1	1	1			1	1							1	1	1	1	1		1	
Polychaeta	多毛綱	1	1	7	6	3	3	3	3	9	9	4	3	1	1	1	1	2	2	5	5	10		9	
Echinoidea	海膽綱	1	1					1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	
Ophiuroidea	a蛇尾綱			1	1	1	1			1	1					1	1	1	1	1	1	1		1	
Bivalvia 雙身	殼綱	3	3	7	7	8	8	5	5	9	9	4	4	5	5	2	2	4	4	6	6	9		9	
Scaphopoda	ia 掘足綱													1	1					1	1	1		1	
Gastropoda	a腹足綱	3	3	4	4	6	6	1	1	6	6	3	3	2	2	3	3	4	4	6	6	7		7	
Cephalopod	da頭足綱							1	1	1	1											1		1	
Malacostrac	ica 軟甲綱	7	7	5	5	10	10	8	8	16	16	8	8	7	5	8	8	10	8	13	13	18		18	
Osteichthye	es 硬骨魚綱			1	1	3	3	2	2	4	4	1	1			1	1	2	2	3	3	5		5	

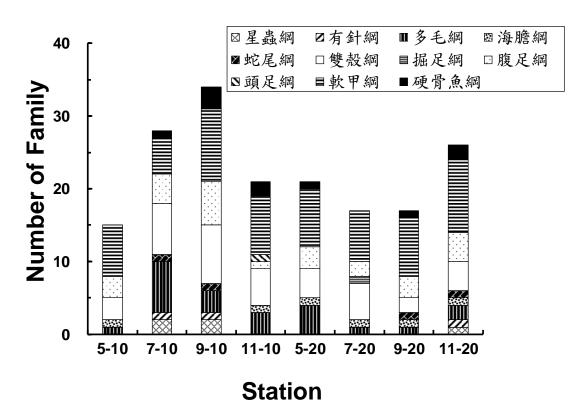


圖 2.10.2-1 民國 114 年第 3 季(7 月 17 日)離島產業園區亞潮帶各測站 小型底棲動物之科數變化

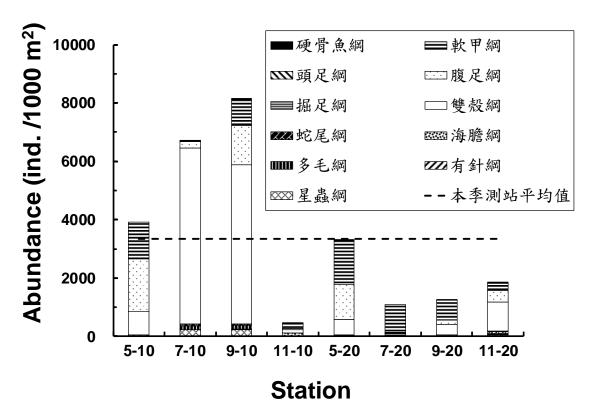


圖 2.10.2-2 民國 114 年第 3 季(7 月 17 日)離島產業園區亞潮帶各測站 小型底棲動物之豐度變化

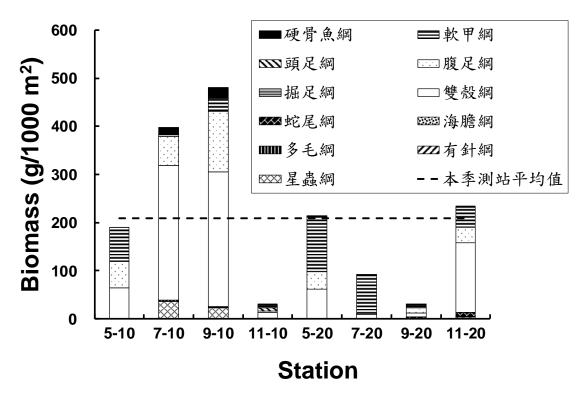


圖 2.10.2-3 民國 114 年第 3 季(7 月 17 日)離島產業園區亞潮帶各測站 小型底棲動物之生物量變化

表 2.10.2-2 民國 114 年第 3 季(7 月 17 日)亞潮帶小型底棲動物各測站 底棲生物相似度分析

Similarity	5-10	7-10	9-10	11-10	5-20	7-20	9-20
7-10	70.79						
9-10	62.86	77.62					
11-10	39.76	42.01	44.68				
5-20	71.93	65.52	67.46	50.67			
7-20	52.10	54.07	56.80	48.69	56.80		
9-20	54.30	58.60	64.18	64.52	66.20	61.27	
11-20	59.62	60.40	63.48	68.45	66.21	64.74	69.47

註:粗體表示>50%,底線表示<10%

2.10.3 潮間帶底棲生物調查

一、潮間帶小型底棲生物部份:

本年度第3季(7月23日)潮間帶採集之四測站底棲動物,包含有針綱(1科)、多毛綱(6科)、雙殼綱(4科)、腹足綱(4科)和軟甲綱(6科)、共計20科(表2.10.3-1)。物種數最多的測站為五條港高潮線測站,達13科,其中以多毛綱和軟甲綱科數最多,有6科,腹足綱與雙殼綱科數次之,各有4科,最少的為有針綱,僅1科(圖2.10.3-1)。本季的平均豐度和生物量分別為280 ind./m²和190.85 g/m²。豐度以五條港高潮線測站最高,生物量則以五條港低潮線測站最高,分別達690 ind./m²及537.57 g/m²。而新興水閘高潮線測站僅採集到1科生物,因此在豐度最低,生物量以五條港高潮線測站為最低(表2.10.3-1、圖2.10.3-2、圖2.10.3-3)。

豐度上的最優勢大類為多毛綱,佔 56%,其次為腹足綱 (28%),小頭蟲科是豐度最高 (63 ind./m^2) 的優勢科,佔 22.3%,次之為海稚蟲科 $(60 \text{ ind./m}^2,21.4\%)$ 和玉螺科 $(45 \text{ ind./m}^2,16.1\%)$;生物量的最優勢大類為雙殼綱,佔 70.4%,其次為軟甲綱,佔 29.2%,以簾蛤科的 70.4%為最優勢 (134.39 g/m^2) ,次之為梭子蟹科 $(47.01 \text{ g/m}^2,24.6\%)$ 及黎明蟹科 $(6.14 \text{ g/m}^2,3.2\%)$ (表 2.10.3-1)。

各測站底棲動物的多樣性指標中,各測站的豐富度介於 0.00~1.84 之間,均勻度為 0.00~0.91,而歧異度在 0.00~2.06 之間(表 2.10.3-1)。其中,豐富度和歧異度在五條港高潮線測站皆最高;均勻度在五條港低潮線測站最高。而新興水閘高潮線在豐富度、均勻度和歧異度則皆為最低。

本季各測站間之相似度皆低,以五條港高潮線和五條港低潮線測站間的相似度 41.7%為最高,相似度最低出現在新興水閘與五條港高潮線和五條港低潮線測站之間,皆為 0%,其餘各測站間的相似度在 14.2~25.7% (表 2.10.3-2)。

二、潮間帶底質粒徑及有機質部分:

本季潮間帶的底質粒徑分析結果,在台西水閘高潮線測站以 $125~250~\mu$ m 的細砂為主(44.7%),新興水閘測站以 $250~500~\mu$ m 的中細砂為主(47.2%),兩測站以 $125~\mu$ m 細砂至 $2000~\mu$ m 之粗砂,分別佔了 91.1%及 98.8%,屬於粗顆粒的砂質底。而五條港高潮線屬於較細顆粒的粉砂底,主要以 $3.9~62.5~\mu$ m 的粉砂為主(34.3%), $125~250~\mu$ m 的粉砂次之(23.9%)。五條港低潮線則以粒徑較小的粉砂($3.9~62.5~\mu$ m)為主,佔 77.7%,與小於 $3.9~\mu$ m 的黏土合計佔 89.8%,屬於泥質底床。

有機質在各測站間有很大差別,台西水閘高潮線測站底質的有機質佔 0.89%為最低,新興水閘高潮線測站次之(1.09%),皆低於五條港二測站(1.26~2.39%)(表 2.10.3-3)。

三、與歷年同季比較

本季的平均豐度和生物量分別為 280 ind./m²和 190.9 g/m²低於歷年同季豐度平均值(317 ind./m²),但明顯高於歷年同季生物量平均值(33 g/m²)。潮間帶底棲生物的豐度,以第 2 季(361 ind./m²)最高,其次為第 3 季和第 4 季(279 ind./m²),最低為第 1 季(266 ind./m²)。而生物量則以第 3 季最高,其次為第 1 季(27 g/m²)和第 4 季(19 g/m²),最低反而為第 2 季。與歷年同季同測站的豐度相比,本季在五條港高潮線測站的測值高於歷年同季測站;而歷年同季同測站生物量,反而本季五條港高潮線測站低於歷年測值。

表 2.10.3-1 民國 114 年第 3 季 (7 月 23 日)離島產業園區海域潮間帶各測站小型底棲生物豐度 $(A, ind./m^2)$ 及生物量 $(B, g/m^2)$

	Taxa				Sta								
Class Family	Species -		剥高潮線		高潮線		睦低潮線		嗣高潮線_			Iean	
•	~ F	ind.	wt.	ind.	wt.	ind.	wt.	ind.	wt.	ind.	%	wt.	%
Enopla 有針綱													
Enopla (細				40	0.16					10	3.57	0.04	0.02
Polychaeta 多毛絲													
	dae 雙櫛蟲科			10	0.00					3	0.89	0.00	0.00
Capitellidae	e小頭蟲科			230	0.01	20	0.00			63	22.32	0.00	0.00
Cirratulidae	e絲鰓蟲科			50	0.05	30	0.01			20	7.14	0.02	0.01
	吻沙蠶科							10	0.00	3	0.89	0.00	0.00
Goniadidae	e角吻沙蠶科			20	0.66	10	0.02	10	0.00	10	3.57	0.17	0.09
Spionidae	海稚蟲科							240	0.20	60	21.43	0.05	0.03
Bivalvia 雙殼綱													
Mytilidae 素	設菜蛤科			30	0.12					8	2.68	0.03	0.02
Tellinidae #	樱蛤科							10	0.06	3	0.89	0.02	0.01
Veneridae	簾蛤科					10	537.52	10	0.02	5	1.79	134.39	70.41
Gastropoda 腹足	網												
Acteonidae	捻螺科							10	0.01	3	0.89	0.00	0.00
Ampullariid	lae 蘋果螺科			60	0.07					15	5.36	0.02	0.01
Nassariidae	e纖紋螺科			60	1.24					15	5.36	0.31	0.16
Naticidae 3				140	0.16	40	0.02			45	16.07	0.05	0.02
Malacostraca 軟門													
Amphipod				10	0.00			10	0.06	5	1.79	0.02	0.01
Alpheidae				10	4.60					3	0.89	1.15	0.60
	almidae 大眼蟹科			20	5.81					5	1.79	1.45	0.76
Matutidae								10	24.57	3	0.89	6.14	3.22
	梭子蟹科	10	188.03							3	0.89	47.01	24.63
Ocypodida				10	0.01					3	0.89	0.00	0.00
Total individuals		10	188.0	690	12.89	110	537.57	310	24.92	280		190.85	
No	o. Species	1		13		5		8		20			
	ecies Richness	0.00		1.84		0.85		1.22		3.37			
	elou's Evenness	0.00		0.80		0.91		0.47		0.78			
	nannon-Wiener Index	0.00		2.06		1.47		0.97		2.35			
	%		閘高潮線		悲高潮線		巷低潮線		剥高潮線				
Er	nopla 有針綱			5.8	1.2					3.6		0.0	
	olychaeta 多毛網			44.9	5.6	54.5	0.0	83.9	0.8	56.3		0.1	
									0.3				
	valvia 雙殼網			4.3	0.9	9.1	100.0	6.5		5.4		70.4	
	astropoda 腹足綱			37.7	11.4	36.4	0.0	3.2	0.0	27.7		0.2	
M	alacostraca 軟甲綱	100.0	100.0	7.2	80.8			6.5	98.8	7.1		29.2	
	Family	新興水	閘高潮線	五條洋	통高潮線	五條	巷低潮線	台西水	剥高潮線				
Er	nopla 有針綱			1						1			
Po	olychaeta 多毛綱			4		3		3		6			
Bi	valvia 雙殼綱			1		1		2		4			
				3		1				4			
		1				•							
Bi Ga	valvia 雙般網 astropoda 腹足網 alacostraca 軟甲網	1		1 3 4		1							_

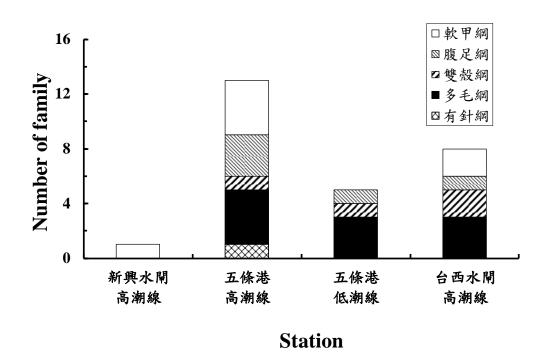


圖 2.10.3-1 民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站 小型底棲生物之種類數變化

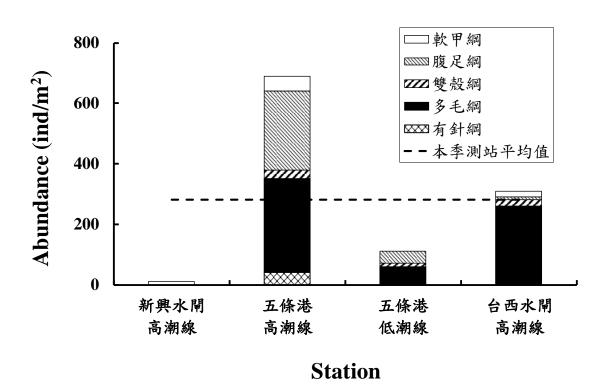


圖 2.10.3-2 民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站 小型底棲生物之豐度(ind./m²)變化

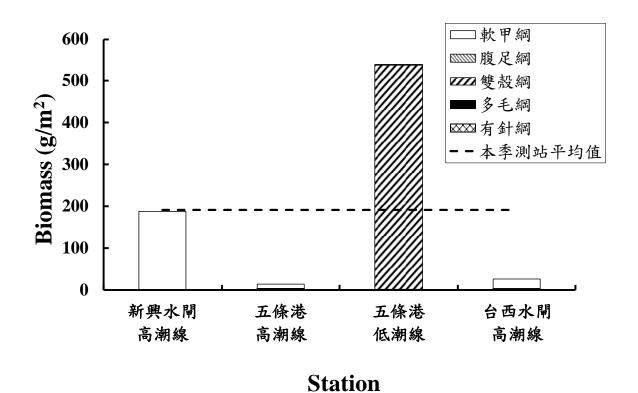


圖 2.10.3-3 民國 114 年第 3 季(7 月 23 日)離島產業園區潮間帶各測站 小型底棲生物之生物量(g/m²)變化

表 2.10.3-2 民國 114 年第 3 季(7 月 23 日)潮間帶小型底棲生物各測站 底棲生物相似度分析

Similarity	新興水閘高潮線	五條港高潮線	五條港低潮線
五條港高潮線	<u>0.00</u>		
五條港低潮線	0.00	41.72	
台西水閘高潮線	<u>0.00</u>	14.18	25.74

表 2.10.3-3 民國 114 年第 3 季(7 月 23 日)潮間帶各測站底質粒徑與有機質分析

粒徑等級(μm)	新興水閘	五條港高潮線	五條港低潮線	台西水閘高潮線
黏土(< 3.9)	0.2 %	5.5 %	12.1 %	0.4 %
粉砂(3.9~62.5)	0.7 %	34.3 %	77.7 %	2.2 %
極細砂(62.5~125)	0.2 %	12.9 %	8.1 %	6.2 %
細砂(125~250)	3.5 %	23.9 %	2.0 %	44.7 %
中細砂(250~500)	47.2 %	20.1 %	0.1 %	41.4 %
粗砂(500~1000)	44.8 %	3.0 %	0.0 %	4.8 %
極粗砂(1000~2000)	3.3 %	0.1 %	0.0 %	0.2 %
有機質%	1.09 %	2.39 %	1.26 %	0.89 %

2.10.4 漁獲生物種類調查

一、漁獲生物種類分析

1. 漁獲生物種類分析

本季的採樣方法是依據中華民國行政院環境保護署公告之海域 魚類採樣通則實施(中華民國93年2月19日環署檢字第0930012345 號公告,自中華民國93年6月15日起實施,NIEA E102.20C),由於 本調查實驗的海域水深淺於100公尺,故進行二條測線的底刺網採 樣。114年度第3季(07/21)於雲林海域底刺網作業之漁獲生物,兩季 次各大類生物之種類數如下,

第3季(07/21):軟骨魚類1科2屬2種、硬骨魚類6科8屬9種、節肢動物1科2屬2種,無漁獲軟體動物,總數共漁獲8科12屬13種。

2. 漁獲生物重量分析

民國114年第3季(7月21日)調查雲林海域刺網漁獲重量(表 2.10.4-1),共漁獲28.844公斤,本季的採樣共進行2條測線的調查, 捕獲生物重量較高的三種類如下:

(測線 1,漁獲總重量 1713 公克)

斑海鯰	651 公克	38%
大吻斜齒鯊(Scoliodon macrorhynchos)	632 公克	36.9%
黄金鰭鰔	147 公克	8.6%
(測線 2, 漁獲總重量 27131 公克)		
黑邊鰭真鯊(Carcharhinus limbatus)	8685 公克	32%
大吻斜齒鯊	8662 公克	31.9%
星雞魚	5533 公克	20.4%
合計2條測線刺網漁獲重量為28844公克	,重量較高的	前三種生
物相如下:		

大吻斜齒鯊	9294 公克	32.2%
黑邊鰭真鯊	8685 公克	30.1%
星雞魚	5533 公克	19.2%

由圖2.10.4-1發現,本季計漁獲28844公克,無漁獲軟體動物。

表 2.10.4-1 民國 114 年第 3 季雲林海域刺網漁獲生物重量及百分比組成

				114.0	07.21		0油1泊次游	ナハコ
科名	學名	中文名	測約	線1	測	線2	2測線漁獲	百分比
			(g)	(%)	(g)	(%)	重量(g)	(%)
一、軟骨魚類								
真鯊科Carcharhinidae	Scoliodon macrorhynchos	大吻斜齒鯊	632	36.89	8,662	31.93	9,294	32.22
	Carcharhinus limbatus	黑邊鰭真鯊	_	_	8,685	32.01	8,685	30.11
二、硬骨魚類								
海鯰科Ariidae	Arius maculatus	斑海鯰	651	38.00	3,112	11.47	3,763	13.05
鋸腹鰳科Pristigasteridae	Ilisha elongata	長鯯	_	_	54	0.20	54	0.19
石鱸科Haemulidae	Pomadasys kaakan	星雞魚	_	_	5,533	20.39	5,533	19.18
石首魚科Sciaenidae	Chrysochir aureus	黃金鰭鰄	147	8.58	_		147	0.51
	Johnius borneensis	婆羅洲叫姑魚		_	37	0.14	37	0.13
	Johnius taiwanensis	臺灣叫姑魚	84	4.90	_	_	84	0.29
	Pennahia pawak	斑鰭白姑魚	_	_	189	0.70	189	0.66
鯧科Stromateidae	Pampus minor	鏡鯧	_	_	100	0	100	0.35
舌鰨科Cynoglossidae	Cynoglossus bilineatus	雙線舌鰨	140	8.17	448	1.65	588	2.04
三、軟體動物								
四、節肢動物								
梭子蟹科Portunidae	Charybdis (Charybdis) japonica	日本蟳	26	1.52	_	_	26	0.09
	Portunus sanguinolentus	紅星梭子蟹	33	1.93	311	1.15	344	1.19
	總漁獲重量、百分比		1,713	100	27,131	100	28,844	100

[&]quot;-"表示為該網次無採獲該種生物。

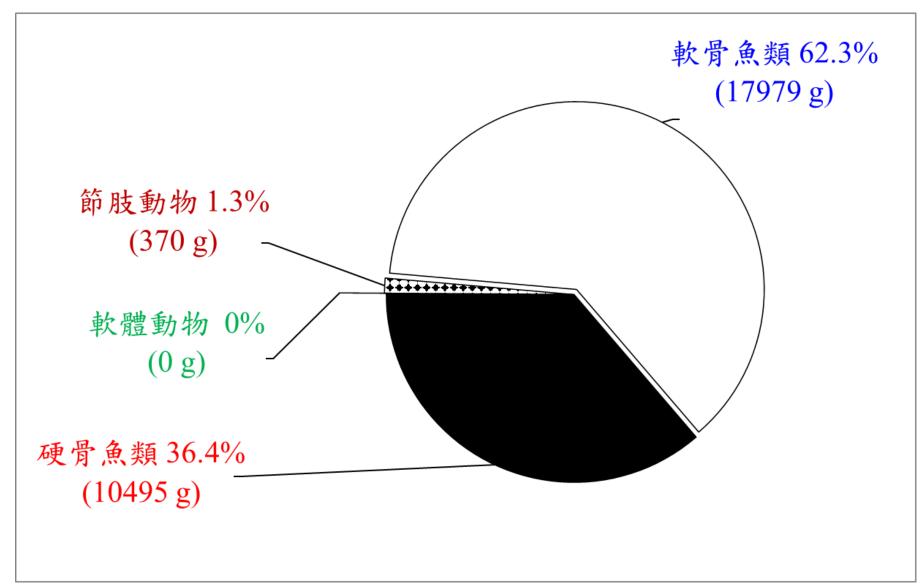


圖 2.10.4-1 雲林海域民國 114 年第 3 季刺網作業之漁獲重量百分比組成

3. 漁獲生物數量分析

民國 114 年第 3 季漁獲生物數量方面,不同測線刺網作業漁獲數量較高的種類如表 2.10.4-2 所示:

(測線1,漁獲總數量20隻)

大吻斜齒	溢	12	隻	60%
斑海鯰		2	隻	10%
臺灣叫姑	魚	2	隻	10%
(測線2,	漁獲總數量 53 隻,	數量較高前三	種類如下)	
大吻斜齒	漁	22	隻	41.5%
斑海鯰		7	隻	13.2%
星雞魚		7	隻	13.2%

合計 2 條測線刺網漁獲數量 73 隻,數量較高的生物相如下:

大吻斜齒鯊	34 隻	46.6%
斑海鯰	9 隻	12.3%
星雞魚	7 隻	9.6%

114年第3季2條測線共漁獲73隻(圖2.10.4-2),本季無漁獲軟體動物。

表 2.10.4-2 民國 114 年第 3 季雲林海域刺網漁獲生物數量及百分比組成

				114.0	7.21		0测的海游	百分比
科名	學名	中文名	測線1		測線2		- 2測線漁獲	
			(隻)	(%)	(隻)	(%)	數量(隻)	(%)
一、軟骨魚類								
真鯊科Carcharhinidae	Scoliodon macrorhynchos	大吻斜齒鯊	12	60	22	41.51	34	46.58
	Carcharhinus limbatus	黑邊鰭真鯊	_	_	3	5.66	3	4.11
二、硬骨魚類								
海鯰科Ariidae	Arius maculatus	斑海鯰	2	10	7	13.21	9	12.33
鋸腹鰳科Pristigasteridae	Ilisha elongata	長鰳	_	_	1	1.89	1	1.37
石鱸科Haemulidae	Pomadasys kaakan	星雞魚	_	_	7	13.21	7	9.59
石首魚科Sciaenidae	Chrysochir aureus	黃金鰭鰄	1	5	_	_	1	1.37
	Johnius borneensis	婆羅洲叫姑魚	_	_	1	1.89	1	1.37
	Johnius taiwanensis	臺灣叫姑魚	2	10	_	_	2	2.74
	Pennahia pawak	斑鰭白姑魚	_	_	4	7.55	4	5.48
鯧科Stromateidae	Pampus minor	鏡鯧	_	_	2	4	2	2.74
舌鰨科Cynoglossidae	Cynoglossus bilineatus	雙線舌鰯	1	5	2	3.77	3	4.11
三、軟體動物								
四、節肢動物								
梭子蟹科Portunidae	Charybdis (Charybdis) japonica	日本蟳	1	5	_	_	1	1.37
	Portunus sanguinolentus	紅星梭子蟹	1	5	4	7.55	5	6.85
	總漁獲數量、百分比		20	100	53	100	73	100

[&]quot;-"表示為該網次無採獲該種生物。

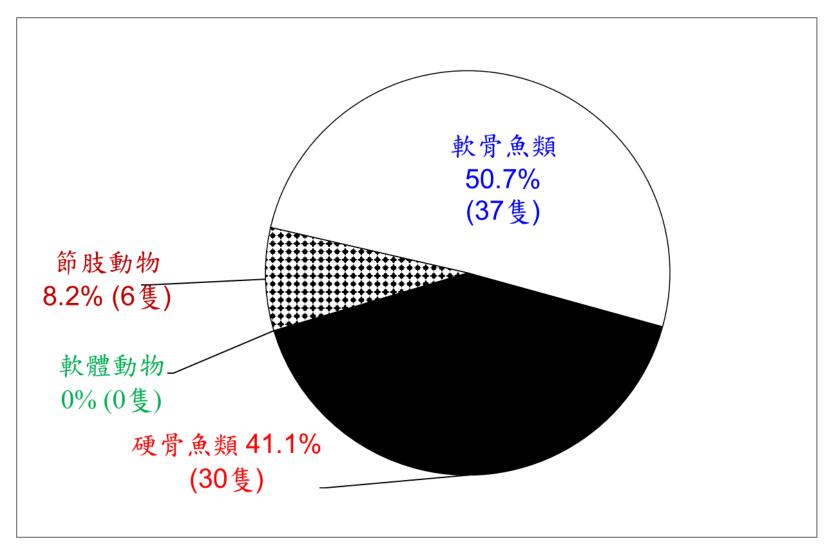


圖 2.10.4-2 雲林海域民國 114 年第 3 季刺網作業之漁獲數量百分比組成

4. 漁獲生物售價分析

漁獲售價為悠關漁民收益最直接之指標,在114年第3季不同測線各單次的作業中,銷售金額最高的三種類(表2.10.4-3),分別如下:

(測線1,漁獲銷售總金額161元)

雙線舌鰨56 元斑海鯰32 元大吻斜齒鯊31 元

(測線2,漁獲銷售總金額2726元)

星雞魚1383 元黑邊鰭真鯊434 元大吻斜齒鯊433 元

合計 2 條測線刺網漁獲生物漁獲售價 2,887 元,銷售金額較高的前三種生物相如下:

星雞魚1383 元47.9%大吻斜齒鯊464 元16.1%黑邊鰭真鯊434 元15.0%

本季漁獲物IPUE為2,887元,本季次無漁獲軟體動物,其IPUE各為0元,占0%(圖2.10.4-3)。

表 2.10.4-3 民國 114 年第 3 季雲林海域刺網漁獲生物每公斤價格及售價組成

					114.0	07.21			0四份次数	2 ml /台 /女 / #	エハル
科名	學名	中文名	測線1			測線2			2測線漁獲	2測線漁獲	百分比 (%)
			(g)	(元/kg)	(元)	(g)	(元/kg)	(元)	重量(g)	售價(元)	(70)
一、軟骨魚類											
真鯊科Carcharhinidae	Scoliodon macrorhynchos	大吻斜齒鯊	632	50	31	8,662	50	433	9,294	464	16.07
	Carcharhinus limbatus	黑邊鰭真鯊	_	_	_	8,685	50	434	8,685	434	15.03
二、硬骨魚類											
海鯰科Ariidae	Arius maculatus	斑海鯰	651	50	32	3,112	50	155	3,763	187	6.48
鋸腹鰳科Pristigasteridae	Ilisha elongata	長鰳	_	_	_	54	100	5	54	5	0.17
石鱸科Haemulidae	Pomadasys kaakan	星雞魚	_	_	_	5,533	250	1383	5,533	1,383	47.90
石首魚科Sciaenidae	Chrysochir aureus	黄金鰭鰔	147	200	29	_	_	_	147	29	1.00
	Johnius borneensis	婆羅洲叫姑魚	_	_	_	37	100	3	37	3	0.10
	Johnius taiwanensis	臺灣叫姑魚	84	100	8	_	_	_	84	8	0.28
	Pennahia pawak	斑鰭白姑魚	_	_	_	189	200	37	189	37	1.28
鯧科Stromateidae	Pampus minor	鏡鯧	_	_	_	100	200	20	100	20	0.69
舌鰨科Cynoglossidae	Cynoglossus bilineatus	雙線舌鰨	140	400	56	448	400	179	588	235	8.14
三、軟體動物											
四、節肢動物											
梭子蟹科Portunidae	Charybdis (Charybdis) japonica	日本蟳	26	100	2	_	_	_	26	2	0.07
	Portunus sanguinolentus	紅星梭子蟹	33	100	3	311	250	77	344	80	2.77
總漁獲重量、售價、百分比		1,713		161	27,131		2726	28,844	2,887	100	

[&]quot;-"表示為該網次無採獲該種生物;*表示為下雜漁獲,未計算售價。

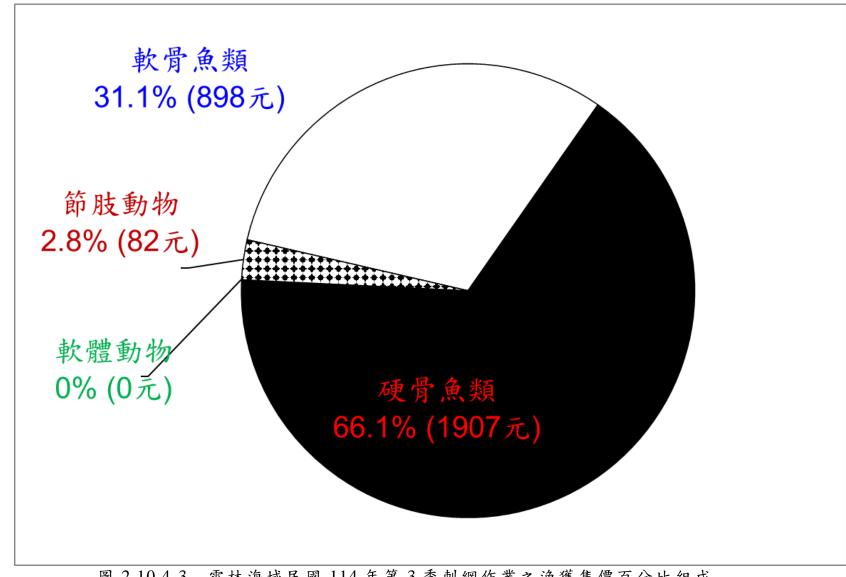


圖 2.10.4-3 雲林海域民國 114 年第 3 季刺網作業之漁獲售價百分比組成

2.10.5 刺網漁獲水產生物體中重金屬濃度調查

本次(114年7月21日)分析之數據,由同步測定的國際標準樣品中,得知本季分析的準確度除 DORM-2 的 Cd 之外,皆於 100±14%(表 2.10.5-1)之內。分析的物種包括有黃金鰭鰔(Chrysochir aureus)、雙線舌鯛(Cynoglossus bilineatus)、長鋤(Ilisha elongata)、婆羅洲叫姑魚(Johnius borneensis)、臺灣叫姑魚(Johnius taiwanensis)、鏡鯧(Pampus minor)、斑鰭白姑魚(Pennahia pawak)、星雞魚(Pomadasys kaakani)、印度牛尾(Platycephalus indicus)、六指多指馬鮁魚(Polydactylus sextarius)等十種魚類;紅星梭子蟹(Portunus sanguinolenyus)及遠海梭子蟹(Portunus pelagicus)等二種蟹類及文蛤(Meretrix lusoria)和牡蠣(Crassostrea gigas),總計十四種水產生物的重金屬蓄積濃度之測定。所有測值皆以濕重(mg/kg 濕重)表示,其中牡蠣的乾濕比為1:6.260(表 2.10.5-2)。

由表 2.10.5-2 可見所檢測的所有重金屬元素,皆呈現依種別、組織別的差異。As 的高值出現在雙線舌鰯的肝臟中(As =7.740)、次高值出現在印度牛尾魚的肌肉中(As =5.184);Cd 的高值出現在市售野生的六指多指馬鮁魚的肝臟中(Cd =1.156)、次高值出現在雙線舌鰯的肝臟中(Cd =1.145);Cu 的高值次高值均出現在紅星梭子蟹的肝胰臟中(Cu $=41.85\sim59.08$);Zn 的高值出現在婆羅洲叫姑魚的肝臟中(Zn =72.77)、次高值均出現在雌星雞魚的肝臟中(Zn =68.28)。本次調查中,消費者常食用部位的水產生物體所含的 As、Cd、Cu 及 Zn 濃度範圍分別介於 $0.043\sim5.184$ 、< $0.025\sim0.140$ 、 $0.091\sim21.30$ 及 $1.970\sim43.49$ mg/kg。文蛤及牡蠣全體(whole body)的 As、Cd、Cu 及 Zn 濃度分別為 $0.246\sim1.306$ 、 $0.101\sim0.491$ 、 $1.175\sim36.87$ 及 $11.69\sim204$ mg/kg (表 2.10.5-2,圖 $2.10.5-1\sim4$)。

根據我國行政院衛生署在2019年1月1日公告之食品中汙染物質及毒素衛生標準(食品衛生管理法第十七條)以及澳洲及紐西蘭食品標準(ANZFA, Australian and New Zealand Food Standards)及美國藥物及食品檢驗局(UAFDA, United States Food and Drug Adminstration)之標準,依魚貝類As < 20,甲殼類As < 76;魚類體肉Cd < 0.05,魚

類肝臟Cd <0.2,甲殼類體肉Cd <0.5,甲殼類肝胰臟Cd <3.0,貝類及頭足類Cd < 1.0;魚蝦蟹類Cu < 10,貝類Cu < 70及Zn <150;牡蠣Zn <1000 mg/kg wet wt.為食用安全限值來做比較。所調查十四種水產生物之可食用部位,除了紅星梭子蟹體螯肉及雌遠海梭子蟹螯肉Cu濃度(介於11.92~21.30、12.65)超出限值之外,其他種類的魚蟹肉都低於上述的食品衛生標準,皆無食用上的安全顧慮。至於生物體的內臟部位,雄雙線舌鰯、臺灣叫姑魚、鏡鯧、星雞魚及六指多指馬鮁魚等魚類肝臟中的Cd(介於1.145、0.748、0.377、0.398、0.399~0.372、1.046~1.254);印度牛尾魚肝臟及蟹類肝胰臟中的Cu(介於14.50、41.85~59.08、11.16)中的Cu,皆高於此標準。因生物體內臟中的Cd,則因其民眾所食用的量可能不多,因此對消費者健康之影響有限。

進一步將所測得的結果,利用1993~1996國人營養調查 (NAHSIT: Nutritional and health survey in Taiwan)結果所得之每人每週平均漁產品的消費量為280公克~441公克,計算每人每週由攝食這些漁產品所攝入之As、Cd、Cu及Zn的總量,並與WHO所訂Cu和Zn的每人每週可允許之攝入總量(AWI=Allowable Weekiy Intake)以及As(inorganic)、Cd的每人每週建議可容忍之攝入量(PTWI=Provisional Tolerable Weekly Intake)相比較,攝取任何組織的As、Cd、Cu、Zn皆無超過PTWI及AWI值的情況。一般在正常的飲食狀況下,攝食此區域所生產的漁產品並無重金屬攝入過量的食用安全顧慮(表2.10.5-4)。

一般而言,無論何種元素,在生物體的肝臟或內臟的濃度皆高於體內。其肝臟對體內濃度之比亦因元素及種類而異。As元素以雄六指多指馬鮁魚的比值最高為 38.8 倍,臺灣叫姑魚次之為 4.36 倍,Cd 元素以六指多指馬鮁魚的比值最高為 50.2 倍,雙線舌鰯次之為 45.8 倍;Cu 元素以雙線舌鰯的比值最高86.2 倍,臺灣叫姑魚次之為 44.8 倍;Zn 元素以六指多指馬鮁魚的比值最高為 18.1 倍,雌星雞魚次之為 15.0 倍。此結果顯而六指多指馬鮁魚、臺灣叫姑魚、雙線舌鰯、雙線舌鰯的肝臟對有毒的重金屬污染物質有相當的生物蓄積能力,因而認為其具有成為重金屬污染指標生物之潛力(表 2.10.5-5)。

生物體中各種重金屬的濃度高低順序,亦依生物別、組織別而異。由(表 2.10.5-6)可見,所有測量的水產生物之體內在

魚類部分除了長鳓外,均是 Zn 最高,As 次之;蟹類體螯肉部分均是 Zn 測值最高,Cu 次之。而內臟方面,除了黃金鰭鰔之外皆是 Zn 測值最高,Cu 次之;蟹類肝胰臟部分除了雄紅星梭子蟹之外均是 Cu 測值最高 Zn 次之;文蛤及牡蠣則以 Zn 最高,Cu 次之。

綜合言之,本次調查所得之十四種刺網漁獲水產生物的44種組織中的As、Cd、Cu和Zn測值,其生物體之可食用部位的組織與過去在此地區的測值相比並無顯著差異(圖2.10.5-5)。大體而言,所有可食部位水產生物的As、Cd、Cu和Zn的測值與台灣未污染其他地區,以及世界其他未污染地區之測值相比,並無明顯異常之現象(表2.10.5-7~12)。

表 2.10.5-1 同步測定之國際標準樣品(SRM, Standard Reference Material)測值(mg/kg dry wt.)

SRM			As	Cd	Cu	Zn
DORM-2	Certified Value	Mean	18	0.043	2.34	25.6
		S.D.	1.1	0.008	0.16	2.3
114/07/21	Measure 1		15.4	-	2.03	27.4
	Measure 2		15.5	-	2.07	24.5
		Mean	15.4	-	2.05	25.9
		S.D.	0.09	-	0.16	2.06
	R%		86	-	88	101
TORT-2	Certified Value	Mean	21.6	26.7	106	180
		S.D.	1.8	0.6	10.1	6.0
114/07/21	Measure 1		21.5	23.5	104	194
	Measure 2		20.9	23.5	105	191
		Mean	21.2	23.5	104	192
		S.D.	0.40	0.05	1.00	2.19
	R%		98	88	98	107

表 2.10.5-2 民國 114年7月21日雲林縣台西鄉外海底棲魚類、 蟹類、文蛤及牡蠣中重金屬含量(mg/kg wet wt.)

Species	Code	Source	N	Size	n	Value	As	Cd	Cu	Zn
Muscle & Chela										
Chrysochir aureus 黃金鰭鰔	Cau-M ♀	Gn	1	24.6 (TL,cm)	1	Mean S.D.	2.038	<0.025	1.022	4.691
Cynoglossus bilineatus 雙線舌鰯	Cb-M ♀	Gn	1	34.4 (TL,cm)	1	Mean S.D.	2.639	<0.025	0.091 -	4.132
	Cb-M ☆	Gn	2	26.3~30.4 (TL,cm)	2(1)	Mean S.D.	4.152 0.758			4.171 0.037
Ilisha elongata 長鳓	Iel-M	Gn	1	15.4 (FL,cm)	1	Mean S.D.	0.546	<0.025	31.857 -	6.463
Johnius borneensis 婆羅洲叫姑魚	Jbo-M ☆	Gn	1	14.9 (TL,cm)	1	Mean S.D.	0.179	<0.025	3 0.100 -	4.676
Johnius taiwanensis 臺灣叫姑魚	Jta-M ☆	Gn	1	16.2 (TL,cm)	1	Mean S.D.	0.369	<0.025	0.115	6.506
	Jta-M ♀	Gn	1	11.2 (TL,cm)	1	Mean S.D.	0.450	<0.025	0.091 -	6.185
Pampus minor 鏡鯧	Pmi-M	Gn	2	14.2~15.7 (FL,cm)	2(1)	Mean S.D.	0.661 0.134	<0.025		4.946 1.013
Pennahia pawak 斑鰭白姑魚	Ppa-M ♀	Gn	3	13.8~16.7 (TL,cm)	3(1)	Mean S.D.	0.363 0.069	<0.025		4.386 0.239
	Ppa-M ♂	Gn	1	12.6 (TL,cm)	1	Mean S.D.	0.065	<0.025	0.068 -	5.142
Pomadasys kaakani 星雞魚	Pk - M♀	Gn	3	39.1~50.3 (FL,cm)	3(1)	Mean S.D.	0.852 0.200	<0.025		4.542 0.166
	Pk - M ♦	Gn	3	34.6~38.2 (FL,cm)	3(1)	Mean S.D.	0.176 0.040	<0.025		6.603 2.380
Platycephalus indicus 印度牛尾	Pi-M	FM	2	45.6~47.6 (TL,cm)	2(1)	Mean S.D.	5.184 0.360	<0.025		5.688 0.122
Polydactylus sextarius 六指多指馬鮁魚	Pse-M1 ♀	FM	5	14.4~14.8 (FL,cm)	5(1)	Mean S.D.	0.645 0.304	<0.025		3.610 0.266
	Pse-M2 ♀	FM	4	15.3~19.5 (FL,cm)	4(1)	Mean S.D.	0.043 0.033	<0.025		1.970 2.622
Portunus 紅星梭子蟹	Psa - M♀	Gn	3	34.8~40.2 (CL,cm)	3(1)	Mean S.D.	1.599 0.215	<0.025		35.77 5.116
	Psa - M ↑	Gn	2	48.3~59.7 (CL,cm)	2(1)	Mean S.D.		0.140 0.197		
	Psa - C♀	Gn	3	34.8~40.2 (CL,cm)	3(1)	Mean S.D.	1.456 0.221	<0.025		37.37 1.280
	Psa - C ♦	Gn	2	48.3~59.7 (CL,cm)	2	Mean S.D.		0.074 0.070		

Gn = Gill net, FM=Fish market, N = Pooled individual number, n () = Cd Analysed sample,

TL = Totel Length, FL = Fork Length, CL = Carapace Length, OL = Operculum SW = Shell Width,

表 2.10.5-2(續 1) 民國 114 年 7 月 21 日雲林縣台西鄉外海底棲魚類、蟹類、文蛤及牡蠣中重金屬含量(mg/kg wet wt.)

Species	Code	Source	N	Size	n	Value	As	Cd	Cu	Zn
Muscle & Chela										
Chrysochir aureus 黃金鰭鰔	Cau-M♀	Gn	1	24.6 (TL,cm)	1	Mean S.D.	2.038	<0.025 -	1.022	4.691
Cynoglossus bilineatus 雙線舌鰯	Cb-M ♀	Gn	1	34.4 (TL,cm)	1	Mean S.D.	2.639	<0.025 -	0.091 -	4.132
	Cb-M ☆	Gn	2	26.3~30.4 (TL,cm)	2(1)	Mean S.D.	4.152 0.758	<0.025	0.553 0.698	4.171 0.037
Ilisha elongata 長鳓	Iel-M	Gn	1	15.4 (FL,cm)	1	Mean S.D.	0.546	<0.025	1.857 -	6.463
Johnius borneensis 婆羅洲叫姑魚	Jbo-M ☆	Gn	1	14.9 (TL,cm)	1	Mean S.D.	0.179	<0.025 -	0.100 -	4.676
Johnius taiwanensis 臺灣叫姑魚	Jta-M ↑	Gn	1	16.2 (TL,cm)	1	Mean S.D.	0.369	<0.025 -	0.115	6.506 -
	Jta-M ♀	Gn	1	11.2 (TL,cm)	1	Mean S.D.	0.450 -	<0.025 -	0.091	6.185 -
Pampus minor 鏡鯧	Pmi-M	Gn	2	14.2~15.7 (FL,cm)	2(1)	Mean S.D.	0.661 0.134	<0.025 -	0.092 0.003	4.946 1.013
Pennahia pawak 斑鰭白姑魚	Ppa-M ♀	Gn	3	13.8~16.7 (TL,cm)	3(1)	Mean S.D.	0.363 0.069	<0.025 -	0.116 0.010	4.386 0.239
	Ppa-M ☆	Gn	1	12.6 (TL,cm)	1	Mean S.D.	0.065	<0.025 -	0.068	5.142
Pomadasys kaakani 星雞魚	Pk - M♀	Gn	3	39.1~50.3 (FL,cm)	3(1)	Mean S.D.	0.852 0.200	<0.025 -	0.133 0.010	4.542 0.166
	Pk - M ☆	Gn	3	34.6~38.2 (FL,cm)	3(1)	Mean S.D.	0.176 0.040	<0.025	50.141 0.013	6.603 2.380
Platycephalus indicus 印度牛尾	Pi-M	FM	2	45.6~47.6 (TL,cm)	2(1)	Mean S.D.	5.184 0.360	<0.025 -	0.066 0.006	5.688 0.122
Polydactylus sextarius 六指多指馬鮁魚	Pse-M1 ♀	FM	5	14.4~14.8 (FL,cm)	5(1)	Mean S.D.	0.645 0.304	<0.025 -	0.111 0.122	3.610 0.266
	Pse-M2 ♀	FM	4	15.3~19.5 (FL,cm)	4(1)	Mean S.D.	0.043 0.033	<0.025 -	0.326 0.214	
Portunus sanguinolenyus 紅星梭子蟹	Psa - M♀	Gn	3	34.8~40.2 (CL,cm)	3(1)	Mean S.D.	1.599 0.215	<0.025 -	16.59 2.674	35.77 5.116
	Psa - M ☆	Gn	2	48.3~59.7 (CL,cm)	2(1)	Mean S.D.	1.125 0.194	0.140 0.197	11.92 4.629	30.19 6.725
	Psa - C ♀	Gn	3	34.8~40.2 (CL,cm)	3(1)	Mean S.D.	1.456 0.221	<0.025	21.30 8.282	37.37 1.280
	Psa - C ♦	Gn	2	48.3~59.7 (CL,cm)	2	Mean S.D.	1.309 0.182		13.55 0.584	43.49 4.066

Gn = Gill net, FM=Fish market, N = Pooled individual number, n () = Cd Analysed sample, TL = Totel Length , FL = Fork Length, CL = Carapace Length , OL = Operculum SW = Shell Width, BW=Body Weight

表 2.10.5-2(續 2) 民國 114 年 7 月 21 日雲林縣台西鄉外海底棲魚類、蟹類、文蛤及牡蠣中重金屬含量(mg/kg wet wt.)

Species	Code	Source	N	Size N	Value	As	Cd	Cu	Zn
Whole Body									
Meretrix lusoria	Ml-1	FM	40	29.01~35.42 4	Mean	0.398	0.101	1.856	13.84
文蛤				(SW,mm)	S.D.	0.018	0.026	0.118	0.663
	M1-2	FM	44	35.77~45.86 2	Mean	0.317	0.125	1.175	11.69
				(SW,mm)	S.D.	0.048	0.043	0.042	0.097
Crassostrea gigas	Cg-1	FM	8	1.04~3.32 3	Mean	0.273	0.411	27.32	204
牡蠣				(BW,gm)	S.D.	0.114	0.075	9.694	34.2
	Cg-2	FM	45	3.06~7.48 3	Mean	0.249	0.491	36.87	180
				(BW,gm)	S.D.	0.039	0.094	13.09	21.9
	Cg-3	FM	12	8.53~10.6 3	Mean	1.306	0.397	25.25	159
				(BW,gm)	S.D.	0.084	0.102	4.231	28.6

Gn = Gill net, FM=Fish market, N = Pooled individual number, n () = Cd Analysed sample,

BW=Body Weight

TL = Totel Length, FL = Fork Length, CL = Carapace Length, OL = Operculum SW = Shell Width,

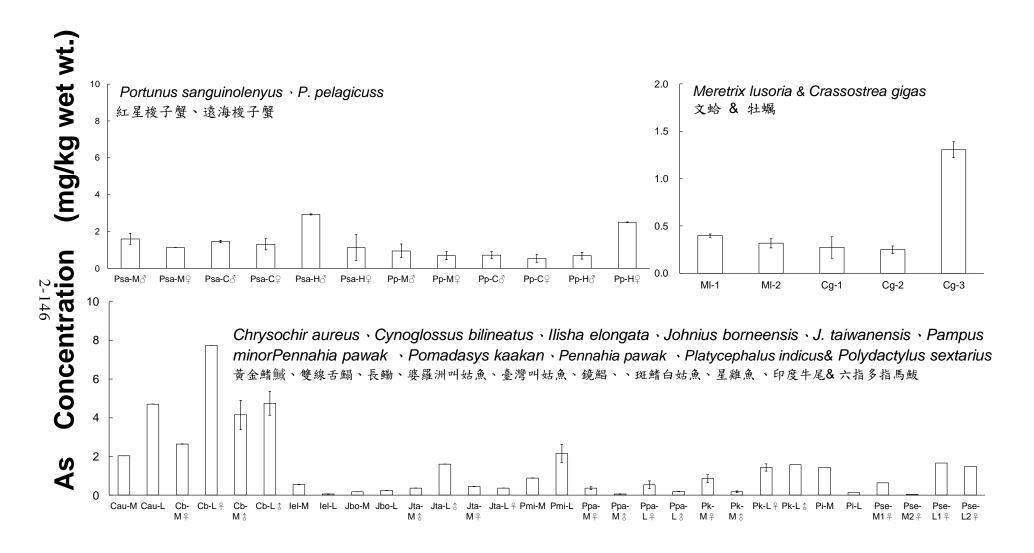


圖 2.10.5-1 114 年 7 月 21 日雲林縣台西鄉外海水產生物體內砷含量變化圖。

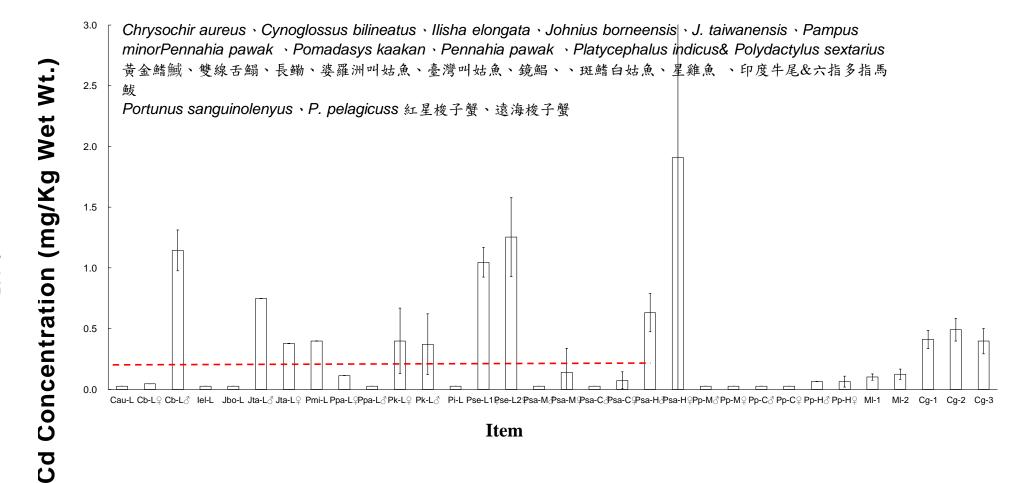


圖 2.10.5-2 114 年 7 月 21 日雲林縣台西鄉外海水產生物體內鎘含量變化圖,虛線表示 ANZFA 魚類之食用安全限值為 Cd<0.2 mg/kg wet wt. 魚肉濃度小於偵測下限 0.025 mg/kg wet wt. 故不列圖顯示

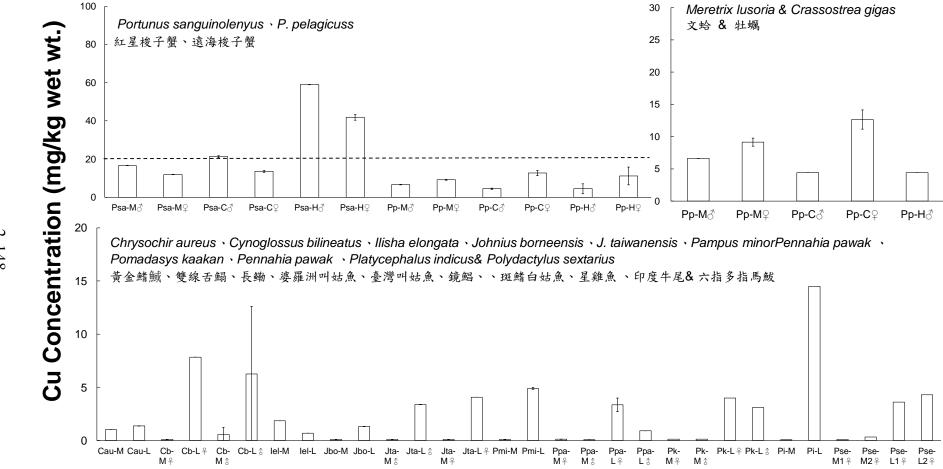
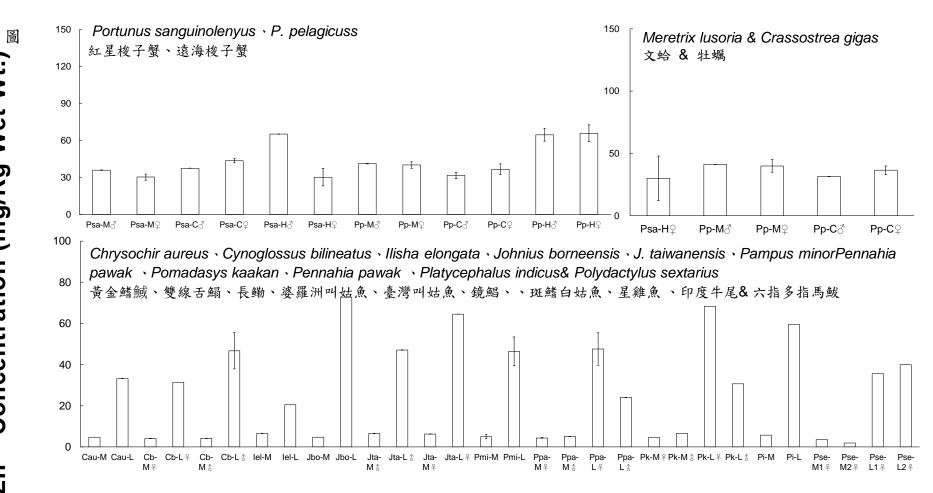



圖 2.10.5-3 114 年 7 月 21 日雲林縣台西鄉外海水產生物體內銅含量變化圖,虛線表示 ANZFA 蟹類之食用安全限值為 Cu<10 mg/kg wet wt

Zn

2.10.5-4 114 年 7 月 21 日雲林縣台西鄉外海水產生物體內鋅含量變化圖,虛線表示 NHMRC 蟹類之食用安全限值為 Zn<150 mg/kg wet wt.。

表 2.10.5-3 各國水產品中重金屬濃度之限值 (mg/kg wet wt.)

Standard	Country	As	Cd	Cu	Zn	Reference
TPHR	Australia		5.5	30	40	Eustace (1974)
		·	0.05	-		行政院衛生署(2019)
DOH	Taiwan		0.5a			食品衛生管理法第十七條
			1.0 ^d			之水產動物可食部分衛生標準
US FDA	American	76ª	3.0			Jewett et al. (2000)
NHMRC	Australia		2.0	30	1000	Bebbington et al. (1977)
NHMRC	Australia		0.2	10	150	Sharif et al. (1993c)
ANZEA	Anaton Paran I Nova Zarland	1.0*	0.2^{a}	10	1000°	Mcpherson (2001)
ANZFA	Australia and New Zealand	20	2.0 ^b	70 ^b		Mortimer (2000)
NFAD	Denmark		1.0	-	-	Dietz et al. (1996)
YFQR	Yugoslavia		0.1	-	-	Qzretic et al. (1990)

TPHR=Tasmania Public Health Regulations-[Food and Drugs standards]

NHMRC=National Health and Medical Research Council of Australia

ANZFA=Australian and New Zealand Food Standards (1999)

US DPA:United States Food and Drug Administration (1993)

DOH= Department Of Health, Taiwan (2009)

NFAD=National Food Agency of Denmark

YFQR=Yugoslav Food Quality Regulation for Seafoods

*=Inorganic only

a= Level of concern for Crustaceans, b=Level of concern for Mollusks, c= Level of concern for Oyster

表 2.10.5-4 民國 114 年 7 月 21 日雲林縣台西鄉外海底棲水產生物中 As、Cd、Cu 及 Zn 濃度的最高、平均及中值,以國人平均漁產攝入量(280~441 g/週,Pan et al., 1999)計算每人每週所攝入之As、Cd、Cu 及 Zn 的總量(mg),並與 WHO 所定 As(Inorganic)、Cd 的 PTWI 值和 Cu 及 Zn 的 AWI 值比較

It	tem	As (inorganic)	Cd	Cu	Zn
最高值		0.015~0.024	0.152~0.240	3.864~6.085	5.00~7.88
內臟	Mean	0.00~0.006*	0.021~0.033	0.246~0.388	10.18~16.04
	Median	0.003~0.005*	0.01~0.002	0.151~0.238	1.610~2.536
全部	Mean	0.003~0.005	0.010~0.015	0.305~0.480	1.222~1.924
	Median	0.002~0.003*	0.0001~0.0002	0.136~0.213	1.329~2.094
可食部化	グ Mean	0.002~0.004*	0.001~0.002	0.203~0.319	0.657~1.034
	Median	0.002~0.004*	0.001~0.002	0.006~0.009	0.231~0.364
牡蠣及	文蛤				
	Mean	0.0006~0.001*	0.012 ~0.019	0.369~1.099	4.555~7.173
	Median	0.0006~0.001*	0.013~0.021	0.780~1.229	6.313~9.942
PTW	I / AWI				
(1	ng)	0.826~0.973	0.399~0.504	22.8~227.5	133

^{*}無機砷之測值以總砷 5%推估

表 2.10.5-5 雲林縣台西鄉外海底棲水產生物體中肝臟和肌肉中重金屬含量間的比值

		金屬含重目]的比值	<u>L</u>		
Species	N	Size (cm)	As	Cd	Cu	Zn
Chrysochir aureus 黃金鰭鰔	1	24.6 (TL)	2.301	1.000	11.19	7.085
Cynoglossus bilineatus 雙線舌鰯	1	34.4 (TL)	2.933	18.16	86.19	7.603
	2	26.3~30.4 (TL)	1.143	45.80	11.33	11.20
Ilisha elongata 長鳓	1	15.4 (FL)	0.115	1.000	0.372	3.165
Johnius borneensis 婆羅洲叫姑魚	1	14.9 (TL)	1.436	1.000	13.29	15.56
Johnius taiwanensis 臺灣叫姑魚	1	16.2 (TL)	4.358	29.92	29.46	7.228
	1	11.2 (TL)	1.976	15.08	44.76	10.42
Pampus minor 鏡鯧	2	14.2~15.7 (TL)	3.265	3.265 0.025	53.12	9.379
Pennahia pawak 斑鰭白姑魚	3	13.8~16.7 (TL)	1.482	7.120	28.97	10.84
	1	12.6 (TL)	3.046	0.080	13.66	4.670
Pomadasys kaakani 星雞魚	3	39.1~50.3 (FL)	1.729	15.96	29.98	15.03
	3	34.6~38.2 (FL)	8.972	14.88	21.94	4.642
Platycephalus indicus 印度牛尾	2	45.6~47.6 (TL)	0.026	1.000	219.7	10.45
Polydactylus sextarius 六指多指馬鮁魚	5	14.4~14.8 (FL)	38.79	41.84	32.11	18.08
	4	15.3~19.5 (FL)	2.301	50.16	13.21	11.08
Portunus sanguinolenyus 紅星梭子蟹	3	34.8~40.2 (CL)	1.913	27.48	3.118	1.780
	2	48.3~59.7 (CL)	0.105	17.84	3.285	0.819
Portunus pelagicus 遠海梭子蟹	2	64.8 (CL)	1.171	2.520	0.414	1.778
	1	48.6~75.4 (CL)	4.086	2.560	1.023	1.719

N=Pooled individual number, TL=Total Length, FL=Fork Length, CL = Carapace Length OL=Operculum Length. OL=Operculum Length.

表 2.10.5-6 民國 114 年 7 月 21 雲林縣台西鄉外海底棲水產生物體中重金屬含量之高低順序

Ranking	Item
Cu> Zn>As> Cd	Hepatopancreas of Portunus sanguinolenyus (紅星梭子蟹- 含)
Zn>As>Cu>Cd	Muscle of Chrysochir aureus (黃金鰭鰄)、Cynoglossus bilineatus (雙線舌鰯)、Johnius borneensis (婆羅洲叫姑魚)、
	J. taiwanensis (臺灣叫姑魚)、Pampus minor (鏡鯧)、Pennahia pawak (斑鰭白姑魚)、Pomadasys kaakan (星雞魚)
	Platycephalus indicus (印度牛尾)、Polydactylus sextarius (六指多指馬鮁魚)
	Liver of Chrysochir aureus (黃金鱔鰔)
Zn>Cu>As>Cd	Muscle of Ilisha elongata (長鋤)、Portunus sanguinolenyus (紅星梭子蟹)、P. pelagicus (遠海梭子蟹)
	Chela of Portunus sanguinolenyus (紅星梭子蟹)、P. pelagicus (遠海梭子蟹)
	Liver of Cynoglossus bilineatus (雙線舌鰨)、Ilisha elongata (長鳓)、Johnius borneensis (婆羅洲叫姑魚)、
	J. taiwanensis (臺灣叫姑魚) 、Pampus minor (鏡鯧)、Pennahia pawak (斑鰭白姑魚) 、Pomadasys kaakan (星雞魚)
	Platycephalus indicus (印度牛尾)、Polydactylus sextarius (六指多指馬鮁魚)
	Hepatopancreas of Portunus sanguinolenyus(紅星梭子蟹-♀)、P. pelagicus(遠海梭子蟹)
	Whole body of Meretrix lusoria (文蛤)、Crassostrea gigas(牡蠣)

表 2.10.5-7 台灣附近海域食用魚類中之重金屬含量(mg/kg wet wt.)

Species	Size (cm)	Tissue	As	Cd	Cu	Zn	Location	Reference
Mugil cephalus	7.2~23.0	M	-	0.01	0.35	-	Tweng-wen Estuary	莊等(1994)
烏魚	13.5~15.6	M	-	0.1	0.25	-	Yang-swei Estuary	莊等(1994)
Liza affinis	7.7~10.3	WB	0.084±0.31	0.005±0.003	0.63±0.08	19.6±4.14	Chi-ku Lagoon	Chen (1999)
前稜鮻	10.5~20.0	M	0.96±0.43	0.004±0.001	0.81±0.46	5.25±1.64	Chi-ku Lagoon	Chen (1999)
	10.5~20.0	L	1.81±0.66	0.085±0.033	3.21±0.56	26.0±1.91	Chi-ku Lagoon	Chen (1999)
Liza sp.	?	M	-	0.41	0.45	2.48	Jiang jiun Estuary	王(1990b)
鯔科					$(0.48 \sim 0.49)$	$(1.13\sim3.02)$		
	?	M	-	< 0.01	0.61	5.03	Tweng-wen Estuary	王(1991)
Liza macrolepis	12.4~27.0	M	0.95±0.26	< 0.002	0.38±0.15	5.44±0.82	Chi-ku Lagoon	Chen (1999)
大鱗鮻	12.4~27.0	L	4.03±1.66	0.116±0.034	31.9±24.8	32.5±10.4	Chi-ku Lagoon	Chen (1999)
Sillago sihama	10.2~12.5	WB	0.37±0.02	0.002±0.001	0.26±0.06	21.2±2.46	Chi-ku Lagoon	Chen (1999)
沙鮻	9.7~15.4	M	1.38 ± 0.40	< 0.002	0.13±0.04	5.61±1.07	Chi-ku Lagoon	Chen (1999)
	13.1~15.1	L	0.28±0.53	0.009±0.006	1.70±0.63	56.6±60.9	Chi-ku Lagoon	Chen (1999)
	?	M		0.66	0.24	-	Jyi-swei Estuary	王 (1990a)
				$(0.21 \sim 0.98)$	0.14~0.63)			
	?	M	-	< 0.05	0.42	4.14	Jiang jiun Estuary	王(1990b)
					$(0.20 \sim 0.64)$	$(2.14\sim5.02)$		
	?	M	-	< 0.01	0.43	5.3	Tweng-wen Estuary	王(1991)
					$(0.13 \sim 0.64)$	(4.14~10)		
	?	M	-	< 0.05	1.44	25.25	Er-jen Estuary	李 & 陳 (1992)
					$(0.14 \sim 3.66)$	(5.90~55.81)		
Tilapia spp.	5.9~15.0	M	-	0.04	0.28	-	Tweng-wen Estuary	莊等(1994)
吳郭魚	10.0~14.5	M	-	0.07	0.4	-	Yang-swei Estuary	莊等(1994)
	3.0~5.0	WB	-	0.22	1.98	-	Yang-swei Estuary	莊等(1994)
	?	M	0.29	0.051	0.66	-	Kaohsiung, Supermarket	劉&鄭(1990)
	30.4~33.8	M	_	< 0.01	0.64	8.42	Kaohsiung, Fish pond	孫等(1986)

表 2.10.5-8 台灣附近海域食用甲殼類中之重金屬含量(mg/kg wet wt.)

Species	Size (mm)	Tissue	As	Cd	Cu	Zn	Location	Reference
Penaeus monodon 草蝦	12.5~15.9	М	-	0.01	6.99	15.64	Tung-kong, Aquaculture	孫等(1986)
Penaeus japonica 斑節蝦	21.1~25.6	M	-	0.01	7.03	14.32	Kaohsiung coast	孫等(1986)
Trachypenaeus curvirostris 厚殼蝦	9.1~11.2	M	-	0.03	11.64	10.52	Kaohsiung coast	孫等(1986)
Parapenaeopsis cornutus 角突仿對蝦	?	WB	-	0.69 (0.31~1.34)	2.22 (0.86~6.44)	-	Jyi-swei Estuary 鹽水溪	£(1990a)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	?	M	-	< 0.05	2.74 (2.04~4.33)	9.60 (3.39~14.65)	Jiang jiun Estuary	£(1990b)
	?	M	-	< 0.01	4.06 (3.43~4.68)	16.4 (14.1~18.3)	Tweng-wen Estuary	王(1991)
	?	M	-	< 0.05	13.97 (5.47~33.33)	-	Er-jen Estuary	李 & 陳 (1992)
Portunus sanguinolentus	9.6~14.5	M	-	nd	11.25	23.45	Kaohsiung coast	孫等(1986)
紅星梭子蟹	?	M	-	0.03 (< 0.01~0.03)	10 (5.57~24.6)	27.8 (10.8~39.7)	Tweng-wen Estuary	£(1991)
	?	M	-	1.30 (0.60~1.60)	5.61 (4.00~13.50)	-	Jyi-swei Estuary 鹽水溪	主(1990a)
	?	M	-	< 0.05	29.32 (7.36~45.0)	-	Er-jen Estuary	李 & 陳 (1992)
Portunus pelagicus 遠海梭子蟹	?	M	-	< 0.01	6.24 (4.76~7.71)	15.2 (11.6~18.8)	Tweng-wen Estuary	£(1991)
	?	M	-	< 0.05	56.1	-	Er-jen Estuary	李&陳(1992)

表 2.10.5-9 台灣附近海域食用貝類中之重金屬含量(mg/kg wet wt.)

Species	Tissue	AS	Cd	Cu	Zn	Location	Reference
Crassostrea gigas	WB	-	0.09	18.02	89	Tung-kong, Mariculture	孫等(1986)
牡蠣	WB	2.79	0.13 ± 0.02	25±8.7	83±18	Chi-ku Lagoon	Chen (1999)
	WB	-	< 0.3	2.8~17.7	38~84	Da-pong Bay	林等(1990)
	WB	-	< 1.0	11.5	81	Da-pong Bay	陳等(1992)
	WB	-	< 1.0	11±6	83±29	Da-pong Bay	溫等(1993)
	WB	-	0.19±0.05	26±11	99±29	Midwestern coast of Taiwan	白&龔(1991)
	WB	-	0.29	50	127	Midwestern coast of Taiwan	白 等(1992)
	WB	-	1.3±0.26	223±147	866±549	Er-ijn Estuary	李&陳(1993)

表 2.10.5-10 世界各國食用魚類中之重金屬含量(mg/kg wet wt.)

Species	Tissue	As	Cd	Cu	Zn	Location	Polluted Status	Reference
Salmon	M	1.1800±0.311	0.046±0.016	0.156±0.059	1.10±0.26	Karachi, Pakistan, Arabian Sea	U	Ashraf & Jaffar (1989)
Tuna	M	0.810 ± 0.016	0.023±0.006	0.209±0.010	1.27±0.47			
Pomfret silver	M	0.680 ± 0.192	0.036±0.009	0.211±0.070	0.38±0.10			
Pomfret black	M	0.821±0.015	0.026±0.007	0.414±0.094	0.67±0.28			
Longtail tuna	M	0.674±0.213	0.027±0.007	0.164±0.037	3.49±0.06			
Indian oil sardine	M	0.640±0.230	0.024±0.008	0.209±0.080	2.11±0.60			
Cod, Gadus morhua	M*	0.8~10.4	0.002~0.05	< 0.3	3~4.4	Newfound land, Nova Soctia, N.W.Atlantic	c U	Hellou et al. (1992)
	L*	0.7~3.34	0.04~0.378	0.2~5.2	2.8~10			
	Go*	0.3~1.72	0.002~0.18	0.6~1.8	33.2~152.8			
9 spp. of Australian commerical fishes	M	0.3~2.2	0.04	0.04~0.87	4.24~9.56	Australia	U	Bebbington et al. (1997)
38 spp.of Marine finishes in 1976~1978	M	0.3~21.1	< 0.1~0.3	< 0.1~1	0.8~25.4	Hong Kong, Kowloon, New Territories	S	Phillips et al. (1982)
Peacock wrasse, Cranilabrus pavo	M	22.9	0.024	-	-	Kvarner-Rijeka Bay, Yugoslavia	Н	Ozretic et al. (1990)
	L	39.1	0.93	-	-			
5 spp. of benthic fishes	M	0.12~5.44	0.01~0.03	-	-			
	L	0.41~7.2	0.05~0.28	-	-			

^{*=} mg/kg dry wt., Dry wt. : wet wt.=1:5, M=Muscle, L=Liver, Go=Gonad, U=Unpollnted, S=silightly polluted, H=Heavily polluted.

表 2.10.5-11 世界各國食用甲殼類中之重金屬含量(mg/kg wet wt.)

Species	Tissue	As	Cd	Cu	Zn	Location	Polluted Status	Reference
King crab,							Status	
Pseudocarcinus gigas	M		0.02	5.3	130	Southeast Austialian waters	U	Turoczy et al. (2001)
	C		0.05	15	163			
	Н		1.6	21	71			
Spiny lobster,								
Panulirus penicillatus	M	27~53	< 0.5~0.7			Hong Kong	S	Phillips et al.(1982)
6 spp.of Crabs in 1976~1978	M	0.9~19.7	< 0.1~7.3	1.1~35.2	10~82	Kowloon,		
17 spp. of Shrimps in 1976~1978	M	0.4~44	< 0.1~7.0	0.7~28.8	13~24	New Territories		
Lesser spider crab,	C	39.4	0.23			Kvarner-	H	Ozretic et al.(1990)
Maia crispata	Н	59.2	3.31			Rijeka Bay,		
Spiny spider crab,	C	66.1	0.04			Yugoslavia		
Maia squinada	H	162.4	7.53					
European lobster,	C	14.0	0.04					
Astacus gammarus	M	12.5	0.06					
	Н	19.4	1.35					

C=Chela, M=Muscle, H=Hepatopancrease, U=Unpollnted, S=slightly polluted, H=Heavily polluted.

表 2.10.5-12 世界各國食用螺貝類中之重金屬含量(mg/kg wet wt.)

Smarker	Т!		Cd	Cu	Zn	Location	Polluted	Reference
Species	Tissue	As	Ca	Cu	Zn	Location	Status	Reference
Mussels, M. californianus	WB	0.006~0.078	0.94~3.26	0.7~2.74	19.4~39.8	Bodega Head,California	U	Goldberg et al.(1983)
Mussels, M. edulis	WB	0.01~0.084	0.22~0.66	1.2~4.54	13.6~39.8	Narragansett Bay Rhode Island		
Mussels, M. galloprovincialis	WB	0.127	0.32	1.25	34.8	Northwest Mediterranean	U	Fowler & Dregioni (1976)
Pacific oyster, Crassostrea gigas	WB	1.69~2.74	0.11~0.14	33~104	109~242	Kaneohe Bay,Hawaii	U	Hunter et al.(1995)
Oyster, Crassostrea virginica	WB	0.9	0.87	33	653	Galveston Bay, Texas	S	Morse et al.(1993)
10 spp. of bivalve in 1976~1978	WB	3.2`39.6	< 0.1~2.6	1.4~16.7	10.3~105	Hong Kong, Kowloon,	S	Phillips et al.(1982)
						New Territories		
8 spp. of gastropod in 1976~1978	M	2.7~176	< 0.1~2.7	0.3~20.7	8.3~55.6			
Mussels, Mytilus galloprovincialis	WB	3.6	0.16			Kvarner-Rijeka Bay, Yugoslavi	a H	Ozretic et al.(1990)
Oyster, Ostrea edulia	WB	8.33	0.94					
Snail, Monodonta turbinata	WB	3.82	0.21					
Limpet, Patella coerulea	WB	2.51	0.50					
Noah`s ark, Arca noal	WB	19.01	0.67					
Great scallop, Pecton jacobeus	M	2.48	0.30					
	v	3.26	0.84					

WB=Whole Body, M=Muscle, V=Viscera, U=Unpollnted, S=slightly polluted, H=Heavily polluted.

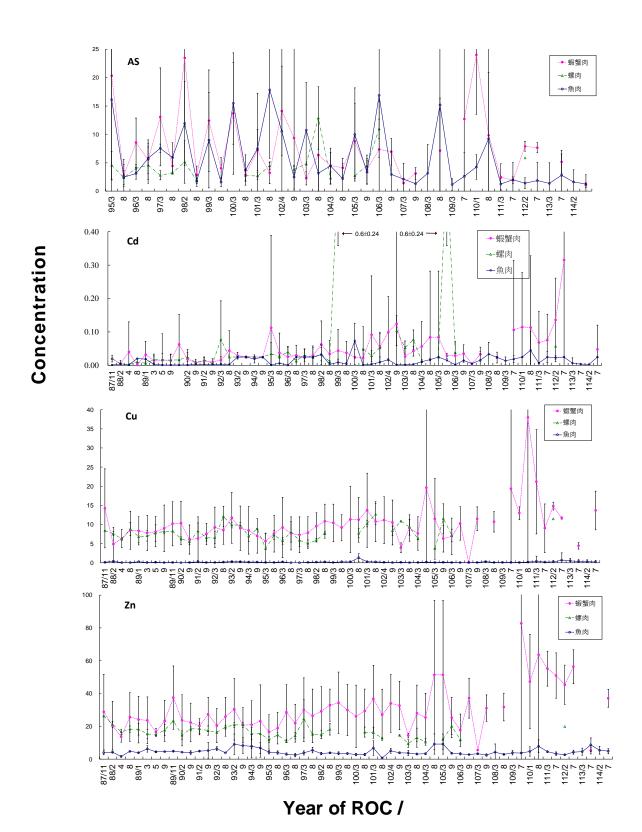


圖 2.10.5-5 民國 87 年 11 月起雲林台西鄉沿海海域產魚、蝦、蟹及螺肉中重金屬含量之歷年變化。虛線表示魚蝦蟹類 NHMRC 之食用安全限值為 Cu<10 mg/kg wet wt.。

2.10.6 仔稚魚調查

本次報告為民國 114 年 7 月 19 日 (第三季)採樣結果。設定四個採樣線,由北至南分別為 SEC5、SEC7、SEC9 及 SEC11 (如圖 1.4-10-1),共 4 個網次。結果包含仔稚魚、魚卵及甲殼類幼生兩部份,分述如下:

一、仔稚魚及魚卵部分

本次採樣共捕獲 11 科的仔稚魚 (表 2.10.6-1), 稚魚以沙鮻科 (Sillaginidae)漁獲尾數所佔比例最高,達 30.92%。其次分別為鰕虎科 (Gobiidae)佔 20.64%、石首魚科 (Sciaenidae)佔 19.92%及鯷科 (Engraulidae)佔 8.89%,共佔總仔稚魚豐度 80.37%,其餘 10 科仔稚魚豐度百分比介於 0.36~6.07%(圖 2.10.6-1)。以出現率而言,沙鮻科、鰕虎科、石首科、鮋科、鳚科及舌鰨科共 6 的出現率為 100%(圖 2.10.6-2)。

各測站仔稚魚豐度以 SEC5 站豐度較高,為 204.39 尾/1000m³, 其餘三測站豐度介於 164.77 尾/1000m³-199.78 尾/1000m³之間(圖 2.10.6-3),測站間總平均豐度 189.32 尾/1000m³。各測站的主要魚類 組成如圖 2.10.6-4 所示,本季各站多以沙鮻科及鰕虎科為主要組成, SEC5 以沙鮻科比例較高,其次為石首科;SEC7 以鰕虎科比例較高, 其次為石首科;SEC9 以沙鮻科比例較高,其次為鰕虎科;SEC11 則 以沙鮻科比例較高,其次為鰕虎科。各測站捕獲仔稚魚科數介於 9-10 科(圖 2.10.6-5)。由歧異度(以科為單位)指數來看,四個 測站介於 1.53~1.86 之間,以 SEC7 測站最高為 1.86(表 2.10.6-2)。 測站間的仔稚魚大類相似度(以科為單位)如表 2.10.6-3,各測站間 相似度在 75.13-83.82%之間,以 SEC5 測站與 SEC7 測站相似度較 高,其中 SEC11 測站與另三個測站相似度較低。

魚卵平均豐度為 10279.50 個/1000m³,在 SEC11 測站豐度最高,為 14580.12 個/1000m³,其餘測站豐度介於 2466.34 個/1000m³- 13061.61 個/1000m³之間(圖 2.10.6-6)。

二、甲殼類部分

本季樣品中蝦幼生的平均豐度為 2655.86 隻/ $1000\,\mathrm{m}^3$,蟹幼生的平均豐度為 1009.81 隻/ $1000\,\mathrm{m}^3$ (表 2.10.6-1)。就空間分布而言,蝦幼生豐度以 SEC7 較高(3468.06 隻/ $1000\,\mathrm{m}^3$),SEC9 最低(1455.44 隻/ $1000\,\mathrm{m}^3$)(圖 2.10.6-7);蟹幼生豐度則以 SEC7 站最高(1353.39 隻/ $1000\,\mathrm{m}^3$),SEC9 站最低(333.89 隻/ $1000\,\mathrm{m}^3$)(圖 2.10.6-8)。

表 2.10.6-1 雲林縣離島式基礎產業園區沿海仔稚魚豐度分布 (114 年 7 月 19 日)

單位:尾數/1000m³

						平位, 毛数/100	/////////////////////////////////////
 測站	_	SEC5	SEC7	SEC9	SEC11	平均	百分比
		個體數	個體數	個體數	個體數	個體數	%
Sillaginidae	沙鮻科	47.89	31.72	56.72	97.85	58.55	30.92
Gobiidae	鰕虎科	26.51	42.29	53.51	33.98	39.07	20.64
Sciaenidae	石首魚科	46.18	37.01	36.39	31.26	37.71	19.92
Engraulidae	鯷科	33.35	22.91	4.28	6.80	16.83	8.89
Clupeidae	鯡科	35.92	7.93	2.14	0.00	11.50	6.07
Blenniidae	鳚科	1.71	5.29	13.91	16.31	9.30	4.91
Cynoglossidae	舌鰨科	4.28	10.57	7.49	5.44	6.94	3.67
Sparidae	鯛科	4.28	0.00	10.70	2.72	4.42	2.34
Soleidae	鰯科	1.71	6.17	0.00	2.72	2.65	1.40
Mugilidae	鯔科	2.57	0.88	3.21	0.00	1.66	0.88
Callionymidae	鼠鰤魚科	0.00	0.00	0.00	2.72	0.68	0.36
Others	其他	0.00	0.00	0.00	0.00	0.00	0.00
 合計		204.39	164.77	188.35	199.78	189.32	100.00
魚卵數		2466.34	13061.61	11009.95	14580.12	10279.50	
蝦幼生		3427.56	3468.06	1455.44	2272.37	2655.86	
蟹幼生		1221.20	1353.39	333.89	1130.75	1009.81	

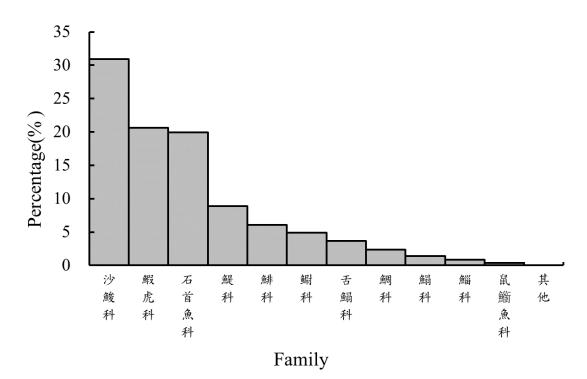


圖 2.10.6-1 雲林縣離島式基礎產業園區沿海仔稚魚各大類組成 (114 年 7 月 19 日)

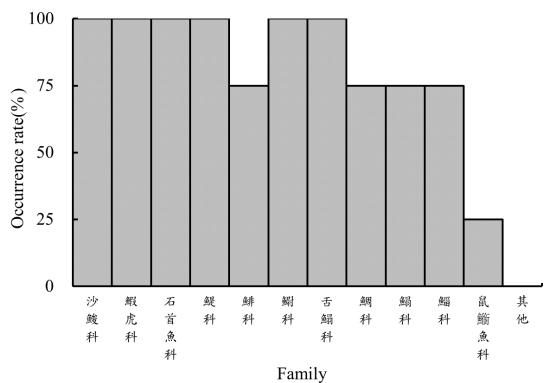
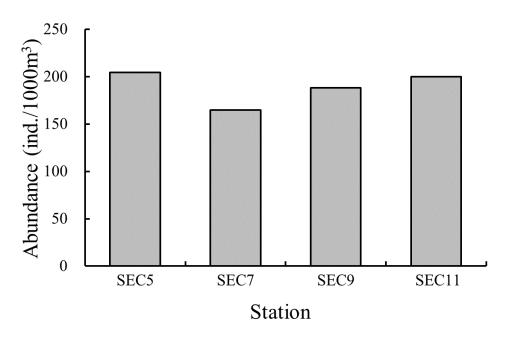
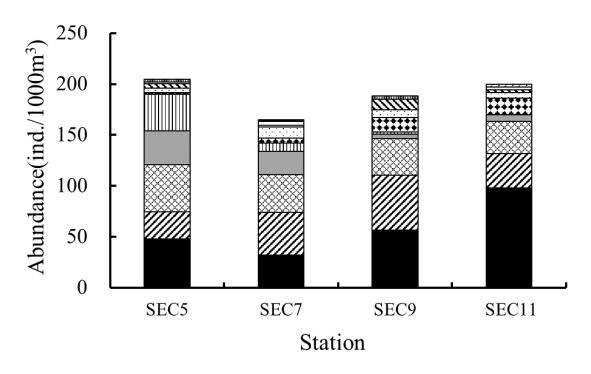




圖 2.10.6-2 雲林縣離島式基礎產業園區沿海仔稚魚各大類出現率 (114 年 7 月 19 日)

雲林縣離島式基礎產業園區沿海仔稚魚豐度 圖 2.10.6-3 (114年7月19日)

■Sillaginidae 沙鮻科

■Engraulidae 鯷科

□Cynoglossidae 舌鰨科

■Mugilidae 鯔科

☑Gobiidae 鰕虎科

■Clupeidae 鯡科

■Sparidae 鯛科

図Sciaenidae 石首魚科

□Blenniidae 鳚科

母Soleidae 鰨科

□ Callionymidae 鼠鰤魚科 □其他

圖 2.10.6-4 雲林縣離島式基礎產業園區沿海主要仔稚魚組成 (百分比>1%)(114年7月19日)

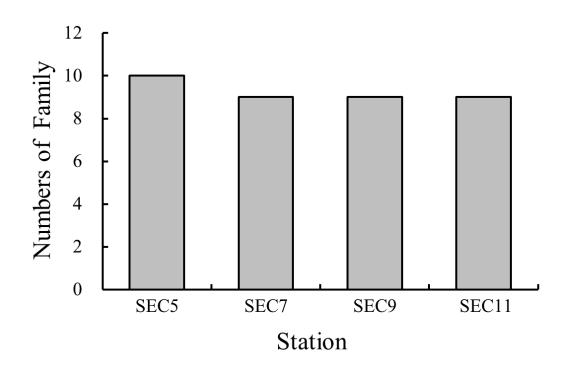


圖 2.10.6-5 雲林縣離島式基礎產業園區沿海仔稚魚調查各測站出現科 數(114 年 7 月 19 日)

表 2.10.6-2 雲林縣離島式基礎產業園區沿海仔稚魚各測站歧異度 (114 年 7 月 19 日)

Station	SEC5	SEC7	SEC9	SEC11
Diversity Index(H')	1.84	1.86	1.73	1.53

表 2.10.6-3 雲林縣離島式基礎產業園區沿海仔稚魚各測站大類相似度 (114年7月19日)

Similarity%	SEC5	SEC7	SEC9	SEC11
SEC5	100			
SEC7	83.82	100		
SEC9	80.09	78.91	100	
SEC11	75.13	77.33	81.78	100

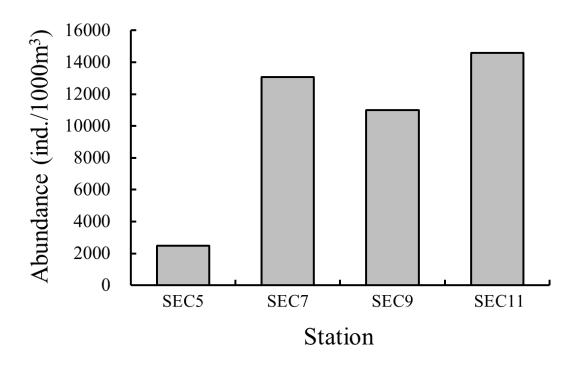


圖 2.10.6-6 雲林縣離島式基礎產業園區沿海魚卵豐度 (114 年 7 月 19 日)

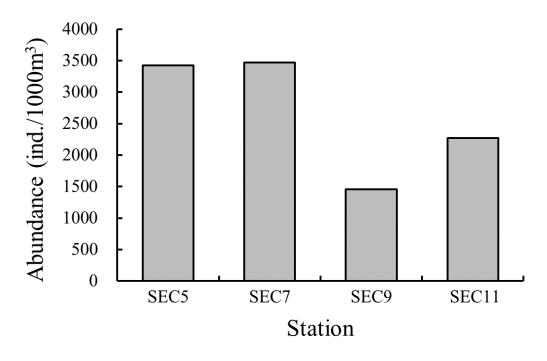


圖 2.10.6-7 雲林縣離島式基礎產業園區沿海蝦幼生豐度 (114 年 7 月 19 日)

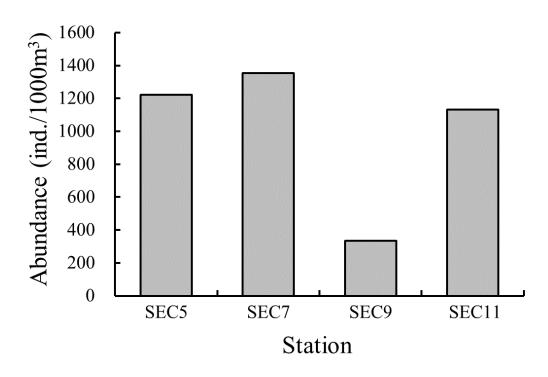


圖 2.10.6-8 雲林縣離島式基礎產業園區沿海蟹幼生豐度 (114 年 7 月 19 日)

三、歷年比較:

本海域執行第 25 年共 97 季次仔稚魚調查,自 90 年 3 月~114 年 07 月累計捕獲魚科數為 102 科。歷年第二季仔稚魚、魚卵及蝦、蟹幼生平均豐度依序 423.12 尾/1000m³、10049.4 個/1000m³、6675.8 隻/1000m³、7137.2 隻/1000m³。就空間分布情形而言,本季仔稚魚豐度整體變化與歷年分布狀況不一致,以SEC11 測站最低,SEC5 測站最高,與歷年分布趨勢相反。本季的仔稚魚整體豐度為 189.32 尾/1000m³,較歷年第二季平均值為低。本季的魚卵平均豐度為 10279.50 個/1000m³,豐度空間變化趨勢與歷年分布一致,最高測站為 SEC11 測站,最低豐度為SEC5 測站,整體豐度則較歷年第二季平均值為高。本季的蟹幼生分布與歷年分布情形不同,最低為 SEC9 測站,最高測站為SEC7,整體豐度則較歷年第二季平均值為低。本季的蟹幼生豐度以 SEC9 測站最低,SEC7 測站最高,整體豐度則較歷年第二季平均值為低。

2.11 漁業經濟

2.11.1 漁業經濟

經調查沿近海漁船主要從事作業漁法為刺網;109年部分漁船曾短暫從事雜魚延繩釣,但因漁獲效率不佳,經調查後該船已轉營刺網漁業;雙船拖網及蝦桁曳網(蝦拖網)因確定未再從事漁業而無調查資料,其中從事雙船拖網漁船其中一艘已於109年2月註銷,另一艘漁船於臺南市將軍漁港進出且作業海域非雲林外海,故該年4月起無雙船拖網相關資料;蝦桁曳網部分經查前調查資料中從事該漁業漁船已轉營流刺網漁業,故109年4月起亦無蝦桁曳網相關資料。

本季雲林縣沿海漁撈業主要為刺網。本季(114年7-9月)雲林縣沿海漁獲種類、產量及產值之調查統計結果,詳表2.11.1-1。所有統計資料主要每月之固定樣本漁戶之調查問卷的整理分析所得。刺網漁業部分調查9艘漁船,共138航次漁獲資料。本季問卷資料最後回收日期為114年09月30日,漁撈標本戶問卷回收照片如下所示:

漁撈標本戶問卷回收

一、刺網漁業:

本季(114年7-9月)刺網漁業資料收集,總計調查船數9艘,共蒐集138航 次漁獲資料,漁獲物有20科27種的水產生物,所有漁獲總量為4,833公斤,總漁獲 金額為1,066,473元。

所採捕之漁獲物以游泳性水生生物為主,漁獲物中前5大優勢魚種以白 鯧科(Ephippidae)的圓白鯧(Ephippus orbis)共954.9公斤最高,佔總產量的19.9%; 其次依序為鯊魚類(Sharks)共602.1公斤,佔總產量的12.5%;花枝類(Sepiida)共416.6公斤,佔總產量的8.7%;土紅科(Dasyatidae)的赤土紅(Dasyatis akajei)共404.2公斤,佔總產量的8.4%;鯧科(Stromateidae)的銀鯧(Pampus argenteus)共372.2公斤,佔總產量的7.7%。

產值方面以鯧科(Stromateidae)的銀鯧(P. argenteus)共257,295元最高,佔總產值的24.1%。其次依序為白鯧科(Ephippidae)的圓白鯧(E. orbis)共185,852元,佔總產值的17.4%;多鱗四指馬鮁(Eleutheronema rhadinum)共125,921元,佔總產值的11.8%;花枝類(Sepiida) 共87,710元,佔總產值的8.2%;鰈形目(Pleuronectiformes)的比目魚類(Pleuronectiformes)共63,500元,佔總產值的6.0%(表2.11.1-1、圖2.11.1-1)。

本季(114年7-9月)每月每航次平均產量及平均產值方面,7月份為39.5公斤/航次/艘、6,753元/航次/艘;8月份為32.0公斤/航次/艘、5,959元/航次/艘;9月份為33.4公斤/航次/艘、8,952元/航次/艘。(表 2.11.1-2、表 2.11.1-3)。

表 2.11.1-1 雲林縣沿海地區刺網漁獲產量之月份變化 (114 年 7-9 月)

FAMILY	SPECIES	114-	年7月	1143	►8月	114	F9月	Te	otal		平均		%
科 別	種 別	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額
Ariidae	Arius maculatus	8.50	243	37.00	975	171.20	8,678	216.70	9,895	72.2	3298.3	4.51%	0.93%
海鯰科	斑海鯰(成仔)												
Carangidae	Alepes djedaba												
鯵科	吉打副葉鰺(黄尾瓜仔)												
	Caranx ignobilis												
	浪人鰺(牛港瓜仔)												
	Parastromateus niger												
	烏鯧(黒鯧)												
	Scomberoides commersonnianus					15.70	832	15.70	832	5.2	277.3	0.33%	0.08%
	大口逆鈎鰺(棘蔥仔、龜柄)												
	Carangoides hedlandensis												
	海蘭德若鰺(甘仔魚)												1
	Megalaspis cordyla												
	大甲鰺(鐵甲)												1
	Seriolina nigrofasciata												1
	小甘鰺												
	Trachinotus blochii	0.70	140			3.00	600	3.70	740	1.2	246.7	0.08%	0.07%
	布氏鯧鰺(紅杉、金鯧、金槍)												
	Trachurus japonicus												
	日本竹筴魚(巴弄、巴攏)												
Carcharhinidae	Sharks	107.00	2,235	121.00	3,395	374.10	36,114	602.10	41,744	200.7	13914.7	12.53%	3.92%
	鯊魚類												
Centrolophidae	Psenopsis anomala												
長鯧科	刺鯧(肉魚,肉鯽,肉質)												<u> </u>
Richardson	Rhinobatos hynnicephalus												
琵琶鱝科	斑紋琵琶鱝												
Dasyatidae	Dasyatis akajei	67.00	2,855	310.40	7,946	26.80	1,128	404.20	11,929	134.7	3976.3	8.41%	1.12%
土紅科	赤土紅 (魴仔,魴魚.紅魚)												<u> </u>
Cynoglossidae	Paraplagusia blochii	25.60	8,960	92.50	23,620	96.90	20,281	215.00	52,861	71.7	17620.3	4.47%	4.96%
舌鰯科	布氏鬚鰨(紅邊)												
Drepaneidae	Drepane punctata	20.90	3,090	113.20	13,806	7.50	1,125	141.60	18,021	47.2	6007.0	2.95%	1.69%
雞籠鯧科	斑點雞籠鯧(花盤)												
Elopidae	Elops machnata												
海鰱科	大眼海鰱(瀾槽)												
Ephippidae	Ephippus orbis	162.50	32,885	626.00	123,171	166.40	29,796	954.90	185,852	318.3	61950.7	19.87%	17.44%
白鯧科	圓白鯧(定盤)												
	Platax orbicularis												
	圓眼燕魚(富貴魚)												

表 2.11.1-1(續 1) 雲林縣沿海地區刺網漁獲產量之月份變化(114 年 7-9 月)

FAMILY	SPECIES	114	年7月	1143	年8月	1143	年9月	Т	otal		平均		%
科 別	種 別	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額
Haemulidae	Pomadasys kaakan	58	9,655	119.90	19,946	193.40	27,082	371.6	56,683	123.9	18894.3	7.73%	5.32%
石鱸科	星雞魚(金陵、金龍)												
	胡椒鯛(加志)												
	Pomadasys maculatus												
	斑雞魚(雞仔魚)												
Kyphosidae	Girella leonina												
魚舵科	小鱗瓜子鱲(黑毛)												
	Kyphosus bigibbus												
	南方舵魚(白毛)												
Latidae	Psammoperca waigiensis												
尖吻鱸科	紅眼沙鱸(紅目鱸)												
Leiognathidae	Leiognathus equulus												
鰏科	短棘鰏(三角仔)												
Lobotidae	Lobotes surinamensis					9.20	1,590	9.20	1,590	3.1	530.0	0.19%	0.15%
松鯛	松鯛(打鐵鱸)												
Lutjanidae	Lutjanus monostigma												
笛鯛科	單斑笛鯛(黑點)												
	Lutjanus argentimaculatus												
	銀紋笛鯛(紅槽)												
	Lipocheilus carnolabrum	11.00	470	27.00	1,250	4.00	200	42.00	1,920	14.0	640.0	0.87%	0.18%
	葉唇笛鯛(厚唇仔)												
Moronidae	Lateolabrax japonicus												
狼鱸科	日本花鱸(七星鱸)												
Mugilidae	Chelon macrolepis												
鯔科	大鱗龜鮻(豆仔魚)												
	Mugil cephalus												
	鯔(鳥魚)												
Palinuridae	Panulirus versicolor												
龍蝦科	雜色龍蝦(龍蝦)												
Platycephalidae	Platycephalus indicus	1.10	220			0.9	270.00	2.00	490	0.7	163.3	0.04%	0.05%
牛尾魚科	印度牛尾魚(牛尾)												
Polynemidae	Eleutheronema rhadinum	8.20	2,451	9.30	3,540	210.10	119,930	227.60	125,921	75.9	41973.7	4.74%	11.81%
馬鮁科	多鱗四指馬鮁(午仔)												
	Polydactylus sextarius												
	六指多指馬鮁(午白、午仔白)												
	Polydactylus microstomus												
	小口多指馬鮁(臭郎午仔)												

表 2.11.1-1(續 2) 雲林縣沿海地區刺網漁獲產量之月份變化(114 年 7-9 月)

FAMILY	SPECIES	11	4年7月	114	年8月	1143	F9月	To	otal		平均		%
科 別	種 別	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額
Portunidae	Portunus pelagicus												
梭子蟹科	遠海梭子蟹(市仔)												
	Portunus sanguinolentus												
	紅星梭子蟹(三目市仔)												
	Scylla serrata												
	鋸緣青蟳(紅蟳)												
	Charybdis feriatus	0.8	0 280	1.50	750	1.00	500	3.30	1,530	1.1	510.0	0.07%	0.14%
	鏽斑蟳(花市仔)												
Rachycentridae	Rachycentron canadum												
海鱲科	海鱺(海鱺仔)												
Rhynchobatidae	Rhynchobatus australiae	38.0	0 2,000	25.4	1,116	101.60	5,471	165.00	8,587	55.0	2862.3	3.43%	0.81%
龍紋鱝科	南方龍紋鱝(呈仔)												
Pristigasteridae	Ilisha elongata												
鋸腹鰳科	長鰳(力魚)												
Scaridae	Chlorurus sordidus												
鸚哥魚科	藍頭綠鸚哥魚(青衣)												
Scatophagidae	Scatophagus argus	6.7	0 1,085					6.70	1,085	2.2	361.7	0.14%	0.10%
金錢魚科	金錢魚(變形苦)												
Sciaenidae	Argyrosomus japonicus					58.50	22,075	58.50	22,075	19.5	7358.3	1.22%	2.07%
石首魚科	日本銀身魚或(鯢魚)												
	Chrysochir aureus												
	黃金鰭魚或(紅三牙)												
	Otolithes ruber	20.0	7,120	90.0	31,490	10.10	3,485	120.10	42,095	40.0	14031.7	2.50%	3.95%
	紅牙魚或(三牙)												
	Johnius macrorhynus												
	大鼻孔叫姑魚(春子)												
	Johnius belangerii	29.3	0 8,790	51.4	16,880			80.70	25,670	26.9	8556.7	1.68%	2.41%
	皮氏叫姑魚(黑加網、黒鮸)												
	Pennahia argentata	7.	5 375	9.0	540	0.70	56	17.20	971	5.7	323.7	0.36%	0.09%
	白姑魚(白口)												
	Pennahia macrocephalus	4.6	0 184					4.60	184	1.5	61.3	0.10%	0.02%
	大頭白姑魚(帕頭仔)												

表 2.11.1-1(續 3) 雲林縣沿海地區刺網漁獲產量之月份變化(114 年 7-9 月)

FAMILY	SPECIES		114年	-7月		114年	-8月	114-	年9月			To	otal			平均				%	
科 別	種 別	重量	ł	金 額	重	量	金 額	重 量	金	額	重量	7	金 額	重	量	金	額	重	量	金	額
Scombridae	Scomberomorus guttatus							12.10)	4,360	1:	2.10	4,360		4.0		1453.3		0.25%		0.41%
鯖科	臺灣馬加鰆(白腹仔、白北)																				
	Scomberomorus commerson																				
	康氏馬加鰆(土魠)																				
	Acanthocybium solandri																				
	棘鰆(竹節)																			1	
	Scomberomorus niphonius																				
	日本馬加鰆(馬加)																			<u> </u>	
	Scomber japonicus																				
	白腹鯖(白腹仔)																			<u> </u>	
Sebastidae	Sebastiscus marmoratus																				
鮋科	石狗公																			<u> </u>	
Sepiidae	Sepiida	,	7.00	1,700	- 2	224.00	48,89	185.60) 3	7,120	41	5.60	87,710		138.9		29236.7		8.67%		8.23%
烏賊科	花枝類																			<u> </u>	
Serranidae	Epinephelus coioides		1.10	660								1.10	660		0.4		220.0		0.02%	1	0.06%
鮨科	點帶石斑魚(石斑)																			<u> </u>	
Sillaginidae	Sillagos																				
沙鮻科	沙鮻																			<u> </u>	
Siganidae	Siganus fuscescens																				
臭肚魚科	褐臭肚魚(臭肚)																			 	
Synodontidae	Saurida elongata																				
合齒魚科	長體蛇鯔(狗母)																			<u> </u>	
Sparidae	Acanthopagrus latus																				
鯛科	黃鰭棘鯛(赤翅仔)																			 	
	Acanthopagrus schlegelii																				
	黑棘鯛(黑格)																			 	
Sphyraenidae	Sphyraena putnamae																				
金梭魚科	布氏金梭魚(竹梭)																			 	
Stromateidae	Pampus argenteus	4'	7.90	26,175		27.80	23,13	296.50	20	7,985	37:	2.20	257,295		124.1		85765.0		7.75%		24.14%
鯧科	銀鯧(白鯧)																			 	
	Pampus minor		8.80	1,600		34.3	9,765.0	118.6	30,2	55.00	16	1.70	41,620		53.9		13873.3		3.37%		3.90%
	鏡鯧(支只)																			<u> </u>	
Pleuronectiformes	Pleuronectiformes	25	8.80	10,130		94.80	34,08	55.10) 1	9,285	17	3.70	63,500		59.6		21166.7		3.72%		5.96%
鰈形目	比目魚類																			<u> </u>	
Paralichthyidae	Paralichthys olivaceus																				
牙鮃科	牙鮃(扁口魚)																			i	

表 2.11.1-1(續 4) 雲林縣沿海地區刺網漁獲產量之月份變化(114 年 7-9 月)

FAMILY	SPECIES	11	4年7月	114	年8月	114-	年9月	To	otal		 平均		%
科 別	種 別	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額	重 量	金 額
Menidae	Mene maculata												
眼眶魚科	眼眶魚(皮刀)												
Uranoscopidae	Ichthyscopus pollicaris												
鰧科	東方披肩騰(屎甕、大頭丁)												
Oplegnathidae	Oplegnathus fasciatus												
石鯛科	條石鯛												
Molidae	Mola mola												
翻車純科	翻車魨(翻車魚、曼波魚)												
Terapontidae	Terapon jarbua												
鯏科	花身鯻(花身雞魚、花身仔)												
Trichiuridae	Trichiurus lepturus												
带魚科	白帶魚												
合 計		671.3	0 123,30	3 2,014.50	364,300	2,119.00	578,218	4,804.80	1,065,820	1601.6	355,273	100.00%	100.00%
漁獲種類數(不含	雜魚)		23		18	2	23	- 1	27		27	留价:香品	(Kg),金額(元)
作業漁船數			9		9		9		9		9	平心・里里	(185),並領(儿)

註:所調查之刺網漁業包含中層流刺網、底刺網及底流刺網。

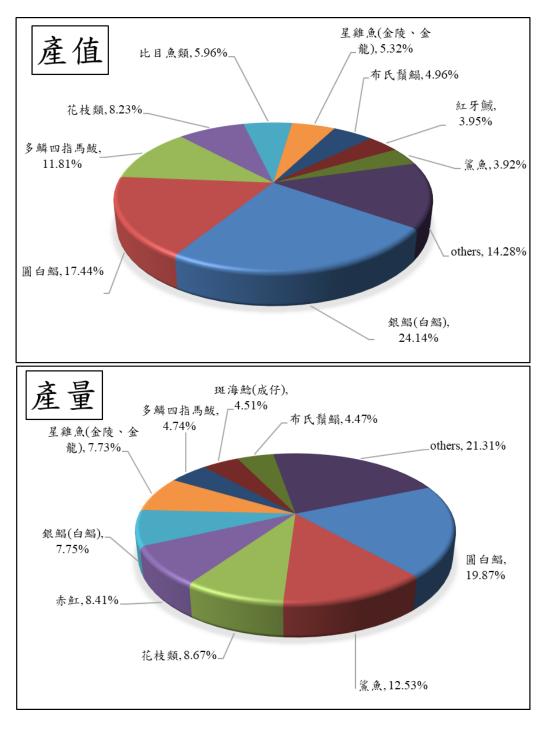


圖 2.11.1-1 雲林沿海地區刺網漁業主要漁獲產值和產量百分比圖 (114 年 7-9 月)

表 2.11.1-2 雲林縣沿海地區刺網作業漁戶之漁獲 CPUE 值統計 (114 年 7-9 月)

編號	船名		114年7月			114年8月			114年9月	
		航次	重量	平均	航次	重量	平均	航次	重量	平均
1	日〇利	2	65.0	32.5	5	64.5	12.9	8	175.7	22.0
2	永O財	2	172.6	86.3	6	323.9	54.0	8	230.6	28.8
3	合O號	4	75.2	18.8	7	173.3	24.8	7	471.7	67.4
4	自O號	2	149.3	74.7	9	646.7	71.9	8	464.8	58.1
5	政O	1	17.1	17.1	1	12.0	12.0	5	122.3	24.5
6	昭〇	3	91.5	30.5	4	47.5	11.9	6	112.2	18.7
7	裕O吉	1	61.9	61.9	7	311.0	44.4	6	248.4	41.4
8	錦O一	2	43.3	21.7	7	319.2	45.6	9	209.1	23.2
9	順〇號	2	23.9	12.0	11	116.4	10.6	5	84.2	16.8
合 計(本地	노)	19	699.8	355.4	57	2,014.5	288.0	62	2,119.0	300.9
CPUE(Kg/射	元次/艘)		•	39.5			32.0			33.4
作業漁船數	(本地)			9			9			9

表 2.11.1-3 雲林縣沿海地區刺網作業漁戶之漁獲 IPUE 值統計表 (114 年 7-9 月)

編號	船名		114年7月			114年8月			114年9月	
		航次	金額	平均	航次	金額	平均	航次	金額	平均
1	日〇利	2	7,865	3,933	5	13,695	2,739	8	52150.5	6,519
2	永O財	2	28,172	14,086	6	62,034	10,339	8	97220.0	12,153
3	合O號	4	17,315	4,329	7	50,360	7,194	7	128496	18,357
4	自O號	2	23,200	11,600	9	97,049	10,783	8	113,527	14,191
5	政O	1	3,490	3,490	1	3,350	3,350	5	26,332	5,266
6	昭〇	3	18,839	6,280	4	9,810	2,453	6	41070	6,845
7	裕O吉	1	9,040	9,040	7	48,049	6,864	6	46,175	7,696
8	錦O一	2	8,110	4,055	7	50,823	7,260	9	57,411	6,379
9	順〇號	2	7,925.0	3,963	11	29131.0	2,648	5	15836.0	3,167
合 計(本地	노)	19	123,955	60,774	57	364,300	53,631	62	578,218	80,572
IPUE(NT/航	次/艘)		•	6,753			5,959			8,952
作業漁船數	(本地)			9			9			9

2.11.2 養殖面積、種類、產量及產值

一、牡蠣養殖

114年第3季共回收18户資料,養殖面積為93.5公頃,地點為四湖鄉,此區域牡蠣養殖以附苗大宗,經調查後本季牡蠣養殖暫無工作,本季未收成,總產值為0元,第3季牡蠣養殖工作為整理蚵架與附苗。(表2.11.2-1)。

自 111 年起重新建立養殖戶以販售蚵苗為主,收成單位為「條」, 故總收成量與單位收成量不與歷年資料進行比較。分析牡蠣養殖 26 年資料(自 85 至 110 年)的年平均單位產量為每公頃 5,771 公斤,牡 蠣養殖 30年資料(自 85 至 114 年)平均單位產值為每公頃 120,446 元, 平均單位成本為每公頃 50,099 元,所以平均單位淨收入為每公頃 75,270 元(表 2.11.2-7)。

二、鰻魚養殖

114年第3季共回收12戶資料,經調查後本季為113與114年放養鰻苗,養殖面積為19.3公頃,本年度有新放養苗,放養量為902,712尾,本季有3戶收成,總產值為4,540,140元,成本支出為12,928,718元,淨收入為-8,388,578元。因此單位產量每公頃為597公斤,平均每公頃販售總價為235,240元,平均每公頃單位成本為669,882元,平均每公頃單位淨收入為-434,641元(表2.11.2-2)。

分析鰻魚養殖 30 年資料(自 85 至 114 年)的年平均單位產量為每公頃 6,875 公斤,平均單位產值為每公頃 2,801,855 元,平均單位成本為每公頃 2,103,002 元,所以平均單位淨收入為每公頃 153,624 元(表 2.11.2-8)。

三、文蛤混養養殖

114年第3季已回收7戶資料,養殖面積為18公頃。本季有2戶收成,文蛤混養之總產量為5,999公斤,總產值為421,950元,成本支出為390,390元,淨收入為31,560元。而單位產量方面,平均每公頃333公斤,平均販售總價每公頃為23,424元,平均單位成本每公頃為65,234元,所以平均淨收入每公頃為1,752元。(表2.11.2-3)。

分析文蛤混養養殖 30 年資料(自 85 至 114 年)的年平均單位產量為每公頃約 4,717 公斤,平均單位產值為每公頃 377,691 元,平均單位成本為每公頃 302,130 元,所以平均單位淨收入為每公頃 81,187元(表 2.11.2-9)。

四、鱸魚養殖

114 年第 3 季已回收 3 戶資料,養殖面積為 11.1 公頃。放養量共 350,000 尾,本季無收成,總產量為 0 公斤,總產值為 0 元,成本支出為 8,288,633 元,淨收入為-8,288,633 元。因此單位產量每公頃為 0 公斤,平均每公頃販售總價為 0 元,平均每公頃單位成本為 746,724 元、平均每公頃單位淨收入為-746,724 元(表 2.11.2-4)。

分析鱸魚養殖 4 年資料(自 111 至 114 年)的年平均單位產量為每公頃約 20,954 公斤,平均單位產值為每公頃 1,919,444 元,平均單位成本為每公頃 1,357,317 元,所以平均單位淨收入為每公頃 598,466元(表 2.11.2-10)。

五、鯛魚養殖

114年第3季回收1戶資料,養殖面積為2.5公頃。本年度放養新苗102,000尾,暫無收成總產量為0公斤,總產值為0元,成本支出為1,175,862元,淨收入為-1,175,862元。因此單位產量每公頃為0公斤,平均每公頃販售總價為0元,平均每公頃單位成本為293,966元、平均每公頃單位淨收入為-293,966元(表2.11.2-5)。

分析鯛魚養殖 4 年資料(自 111 至 114 年)的年平均單位產量為每公頃約 7,280 公斤,平均單位產值為每公頃 441,749 元,平均單位成本為每公頃 740,803 元,所以平均單位淨收入為每公頃-299,054 元(表 2.11.2-11)。

六、蝦類養殖

114年第3季回收3戶資料,為泰國蝦養殖,面積為4.3公頃,本季無收成,總產量為0公斤,總產值為0元,成本支出為917,000元,淨收入為-917,000元,單位產量每公頃為0公斤,平均每公頃販售總價為0元,單位成本為213,256元、平均每公頃單位淨收入為-213,256元(表2.11.2-6)。

分析蝦類養殖 3 年資料(自 111 至 114 年)的年平均單位產量泰國 蝦為每公頃約 1,166 公斤,平均單位產值為每公頃 526,792 元,平均 單位成本為每公頃 740,918 元,所以平均單位淨收入為每公頃-205,792 元(表 2.11.2-12)。

本季各類養殖中,牡蠣有 18 戶養殖戶,鰻魚有 12 戶養殖戶, 文蛤混養有 8 戶養殖戶,鱸魚有 3 戶養殖戶,鯛魚有 1 戶養殖戶, 蝦類有 3 戶養殖戶。收成方面鰻魚與文蛤養殖有收成,後續將持續 追蹤。

表 2.11.2-1 114 年雲林沿海牡蠣養殖標本戶記錄分析調查表

年度				面積 (公頃)	養殖方式	数量(原放養) (條)	下苗時間	收成時間	總收成量 (條)	單價 (NT/條)	販售總價 (NT)	成本支出 (NT)	淨收入 (NT)	工作內容	填表日期
114	吳O軒	牡蠣	四湖	4	平掛									**	114/7
														無	114/8
	7.0				e 111									整理蚵架/附苗	114/9
114	吳O調	牡蠣	四湖	6	平掛									<u>*</u>	114/7
														At the first state	114/8 114/9
114	吳O鶯	21 126	de	7	平掛									整理蚵架/附苗 無	114/9
114	共し寓	71.3%	1207 749	,	十排									**	114/7
														無 整理蚵架/附苗	114/9
114	莊〇英	41 4版	170 -HS	5	平掛									無	114/7
	<i>n</i> = - X				1 421									4	114/8
														整理蚵架/附苗	114/9
114	吳O紜	牡蠣	四湖	2	平掛									*	114/7
														無	114/8
														整理蚵架/附苗	114/9
114	吳O仁	牡蠣	四湖	8	平掛									無	114/7
														無	114/8
														整理蚵架/附苗	114/9
114	吳O敏	牡蠣	四湖	15	平掛									*	114/7
														*	114/8
														整理蚵架/附苗	114/9
114	劉〇蓋	牡蠣	四湖	15	平掛									<u>A</u>	114/7
														<u>A</u>	114/8
114	80#	11.195	- 10	-	# III									整理蚵架/附苗	114/9
114	吳O燕	牡蠣	四湖	2	平掛									<u></u>	114/7 114/8
														無 整理蚵架/附苗	114/8
114	吳O姫	41.48	ma da	1.5	平掛									全理判示/門前	114/9
114	共口址	47.366	ES 1993	1.5										<u>**</u>	114/8
														整理蚵架/附苗	114/9
114	吳O男	牡蠣	四湖	5	平掛									無無	114/7
	774				1 421									<u>***</u>	114/8
														 整理蚵架/附苗	114/9
114	黄O蛟	牡蠣	四湖	3	平掛									無	114/7
														無	114/8
														整理蚵架/附苗	114/9
114	吳O川	牡蠣	四湖	2.5	平掛									無	114/7
														無	114/8
														整理蚵架/附苗	114/9
114	吳O田	牡蠣	四湖	3.5	平掛									*	114/7
														<u>A</u>	114/8
114	80#	21.195	- 10	2.5	# III									整理蚵架/附苗	114/9 114/7
114	吳O峰	往鸦	四湖	3.5	平掛									無	114/7
														無 整理蚵架/附苗	114/8
114	吳O玉	41 40	mn -Hs	2	平掛									金球門米/N B	114/7
117	*OT	イヤーが別	CH 197	-	1 48									<u>**</u>	114/8
														無 整理蚵架/附苗	114/9
114	林O德	牡蜒	四湖	6.5	平掛									無無	114/7
	71 10	-ten-			1 40									<u>**</u>	114/8
														整理蚵架/附苗	114/9
114	黄O郎	牡蠣	四湖	2	平掛									無	114/7
														**	114/8
														整理蚵架/附苗	114/9
			總備	93.5		-			-		-	-	-		

表 2.11.2-2 114 年雲林沿海鰻魚養殖標本戶記錄分析調查表

年度	户名	種類	地點	面積 (公頃)	數量(原放養) (尾)	下苗時間	收成時間	總收成量(kg) (kg)	單價 (NT/Kg)	販售總價 (NT)	成本支出 (NT)	淨收入 (NT)	工作內容	填表日期
114	謝O儒	鰻魚	口湖	2	(Æ)			(Kg)	(IVI/IXg)	(141)	120,000	-120,000	投假/補水	114/7
	-44 - 1114	-2.111		_							600,000	-600,000	投假/補水	114/8
					100,000	114/3					45,000	-45,000	投假/補水	114/9
114	謝O業	鰻魚	口湖	2	100,000	11.05					120,000	-120,000	投銀/補水	114/7
	141 O 2K	100 mg	- 191	-							600,000	-600,000	投假/補水	114/8
					100,000	114/3					45,000	-45,000	投假/補水	114/9
114	林O龄	鰻魚	口湖	1	,						120,000	-120,000	投假/補水	114/7
	77	-2.111		-							300,000	-300,000	投假/補水	114/8
					50,000	114/3					30,000	-30,000	投假/分池	114/9
114	林O樟	細备	口湖	2	20,000	11.05					10,000	-10,000	投銀/補水	114/7
114	711011	//X ///X	- 191	-							800,000	-800,000	投銀/補水/消毒	114/8
											200,000	-200,000	投銀/補水	114/9
114	吳O源	鰻魚	口湖	1.7							80,000	-80,000	投假/補水	114/7
117	7.0 m	P. Z. /T.	L 797	1.7	150,000	114/6	114/8	4,850	225	1,091,250	950,000	141,250	投假/補水/收成	114/8
					150,000	11.00	11.00	1,050	223	1,071,230	78,650	-78,650	投假/補水	114/9
114	莊O福	鰻魚	口湖	0.89		113/5	114/7	5,013	530	2,656,890	84,700	2,572,190	投假/補水/收成/放苗	114/7
	AT O IN	//X ///X	- 191	0.07	51,000	114/6	11.07	5,015	230	2,050,050	652,500	-652,500	投假/補水	114/8
					60,834	114/7					1,445,182	-1,445,182	投假/補水/消毒/分魚	114/9
114	許0也	編為	泰寂	1.5	00,034	11-7//					150.000	-150,000	投銀/補水	114/7
117	a10-0	P. Z. /T.	7-16	1.5							114,300	-114,300	投假/補水	114/8
											50,057	-50,057	投假/補水	114/9
114	謝O霖	編為	口油	1.8	100,000	114/4					179,000	-179,000	投假/補水	114/7
114	101 O MC	P. Z. /T.	L 797	1.0	100,000	114/4					476,000	-476,000	投銀/補水	114/8
							114/9	1,650	480	792,000	81,763	710,237	投假/收成/曬池	114/9
114	謝O益	45 3	17.48	1.8	100,000	114/4	114/9	1,050	480	792,000	1,800,000	-1,800,000	投銀/補水	114/7
	如口皿	声文 /出、	L /9/1	1.0	100,000	114/4					420000	-420,000	投銀/補水	114/7
											131,196	-131,196	投銀/補水	114/9
114	謝〇義	鰻魚	17.48	3	100,000	114/4					230,000	-230,000	投銀/補水	114/7
114	朝し我	爽 点	D 799	3	100,000	114/4					756000	-756,000	投版/補水	114/7
											125,170	-125,170	投銀/補水	114/9
114	謝O年	43 3	17 349	0.92	10,878	114/4					10,000	-123,170	投版/補水	114/9
114	30 Y	声文 /出、	L /9/1	0.92	10,878	114/4					249700	-249,700	投銀/補水	114/7
											35,000	-35,000		114/9
114	莊O育	All A	ra 340	0.69	80,000	114/4					1,546,000	-1,546,000	投假/補水 投假/補水	114/9
114	雅し月	灰黑	山湖	0.09	00,000	114/4					217500	-1,346,000	投银/補水 投银/補水	114/7
											76,000	-76,000	投银/補水 投银/補水	114/8
			總值	19.3	902,712			11,513		4,540,140	12,928,718	-8,388,578	仅取/桶本	114/9
		45	恐但 公頃産		902,712			11,313 597		235,240	669,882	-8,388,378 -434,641		
		-母	公明産	IH.				397		233,240	009,882	-434,041		

表 2.11.2-3 114 年雲林沿海文蛤混養養殖標本戶記錄分析調查表

年度	戶名	種類	地點	面積		下苗時間 收成	時間	總收成量	單價	販售總價	成本支出	淨收入	工作內容	填表日期
				(公頃)	(尾/個)			(Kg)	(NT/Kg)	(NT)	(NT)	(NT)		
114	李O記	文蛤	口湖	0.6	700,000	113/9					25,000	-25,000	投餵	114/7
						11	4/8	1,080	109	117,000	46,000	71,000	投餵/收成	114/8
											10,000	-10,000	整池	114/9
		虱目魚					4/8	720	117	84,000				
		白蝦				11	4/8	30	418	12,500				
114	李O燦	文蛤	台西	0.5		11	14/7	1,223	50	61,150	5,000	56,150	投餵/收成	114/7
						11	4/8	1,041	50	52,050	30,000	22,050	投餵/收成	114/8
						11	4/9	1,905	50	95,250	36,000	59,250	投餵/收成	114/9
114	王〇傑	文蛤	口湖	5.0						0	14,550	-14,550	投餵/收成	114/7
										0	3,390	-3,390	投餵/收成	114/8
										0	1,950	-1,950	投餵/收成	114/9
114	王0華	文蛤	台西	10.0	100,000,000									
114	吳O昆	文蛤	口湖	0.4	600000	114/2					32,000	-32,000	投髁	114/7
											3,500	-3,500	投髁	114/8
													投髁	114/9
		白蝦			100,000	114/2								
		變身苦			300	114/2								
		虱目魚			250	114/2								
114	吳O展	文蛤	口湖	0.4	700000	114/2					32,000	-32,000	投餵	114/7
											3,500	-3,500	投餵	114/8
												0	投餵	114/9
		白蝦			400,000	114/2						0		
		變身苦			500	114/2						0		
		虱目魚			600	114/2						0		
114	吳O輝	文蛤	口湖	0.5	1,000,000	114/2					60,000	-60,000	投價	114/7
											8,000	-8,000	投餵	114/8
												0	投餵	114/9
		白蝦			1,000,000	114/2						0		
		變身苦			800	114/2						0		
		虱目魚			1,000	114/2						0		
114	吳O仁	文蛤	台西	0.6	603200	114/7					72,000	-72,000	曬池/消毒/放苗	114/7
											5,000	-5,000	投餵/補水	114/8
											2,500	-2,500	投餵/補水	114/9
		豆仔魚			500	114/7						0		
		白蝦			200,000	114/7						0		
		變身苦			500							-		
		虱目魚			500	114/7								
		總計		18.0	101,303,200			5,999		421,950	390,390	31,560		
		每公顷產值			5,623,675			333		23,424	21,672	1,752		

表 2.11.2-4 114 年雲林沿海鱸魚養殖標本戶記錄分析調查表

年度	戶名	種類	地點	面積	數量(原放養)	下苗時間	收成時間	總收成量(kg)	單價	販售總價	成本支出	淨收入	工作内容	填表日期
				(公頃)	(尾)			(kg)	(NT/Kg)	(NT)	(NT)	(NT)		
114	許O霖	鱸魚(金目鱸)	麥寮	3							150,000	-150,000	投餵/補水	114/7
					80,000	114/5					116,400	-116,400	投餵/補水	114/8
											79,810	-79,810	投餵/補水	114/9
114	莊〇君	鱸魚(金目鱸)	麥寮	3.1	120,000	114/4					150,000	-150,000	下苗/投餵	114/7
					163,037	114/7					326,074	-326,074	投餵/補水	114/8
											6,022,349	-6,022,349	投餵/補水	114/9
114	林O樹	鱸魚(金目鱸)	麥寮	5								0	空池	114/7
												0	空池	114/8
												0	空池	114/9
		鱸魚(加州鱸)										0	投髁/分池	114/7
											1,404,000	-1,404,000	投餵/補水	114/8
					150,000	114/2					40,000	-40,000	投餵/補水	114/9
			總值	11.1	513,037			0		0	8,288,633	-8,288,633		
			每公顷点	 值				0		0	746,724	-746,724		

表 2.11.2-5 114 年雲林沿海鯛魚養殖標本戶記錄分析調查表

年度	戶名	種類	地點	面積	數量(原放養)	下苗時間收成時間	總收成量(kg)	單價	販售總價	成本支出	淨收入	工作內容	填表日期
				(公頃)	(尾)		(kg)	(NT/Kg)	(NT)	(NT)	(NT)		
114	林O發	鯛魚	麥寮	4						1,145,862	-1,145,862	投餵	114/7
					102,000	113/8				30,000	-30,000	投餵	114/8
											0	投餵	114/9
			總值	4.0	102,000		0		0	1,175,862	-1,175,862		
		4	与公顷産	值			0		0	293,966	-293,966		

表 2.11.2-6 114 年雲林沿海蝦類養殖標本戶記錄分析調查表

年度	戶名	種類	地點	面積	數量(原放養)	下苗時間 收成時間	總收成量	單價	販售總價	成本支出	浄收入	工作內容	填表日期
				(公頃)	(尾/個)		(Kg)	(NT/Kg)	(NT)	(NT)	(NT)		
114	呂〇鉦	泰國蝦	口湖	2.0	350,000	114/4				80,800	-80,800	投假/補水	114/7
										370,000	-370,000	投假/補水	114/8
										130,000	-130,000	投假/補水	114/9
114	蔡O誠	泰國蝦	口湖	1.5	400,000	114/4				120,000	-120,000	投餵/補水	114/7
										80,000	-80,000	投假/補水	114/8
										7,200	-7,200	投餵/補水	114/9
114	蔡O鴻	泰國蝦	口湖	0.8	90,000	114/5				90,000	-90,000	投餵/補水	114/7
										15,000	-15,000	投假/補水	114/8
										24,000	-24,000	投假/補水	114/9
		總計		4.3	840,000		0		0	917,000	-917,000		
	4	承公顷產值	Ĺ		195,349		0		0	213,256	-213,256		

表 2.11.2-7 85~114 雲林沿海牡蠣養殖標本戶年產量產值表

年度	標本戶數	養殖種類	養殖面積	本年放養數量	總收成量	販售總價	成本支出	淨收入	單位收成量	單位總價	單位成本	單位淨收入
			(公頃)	(條)	(kg)	(NT)	(NT)	(NT)	(kg/公頃)	(NT/公頃)	(NT/公頃)	(NT/公頃)
85	1	牡蠣	1.00	5,000	5,000	450,000	250,000	200,000	5,000	450,000	250,000	200,000
86	7	牡蠣	124.20	287,000	627,000	12,587,500	3,357,200	9,230,300	5,048	101,349	27,031	74,318
87	7	牡蠣	115.00	208,000	560,465	8,566,440	9,069,200	-502,760	4,874	74,491	78,863	-4,372
88	7	牡蠣	98.30	200,000	346,354	6,491,420	2,665,300	3,826,120	3,523	66,037	27,114	38,923
89	7	牡蠣	87.00	258,000	379,295	6,167,300	3,004,945	3,162,355	4,360	70,889	34,540	36,349
90	7	牡蠣	101.12	247,600	499,119	8,472,800	3,509,190	4,963,610	4,936	83,790	34,703	49,086
91	7	牡蠣	88.12	245,000	327,175	12,784,410	3,902,980	8,881,430	3,713	145,080	44,292	100,788
92	7	牡蠣	93.80	224,000	388,451	7,416,640	1,277,842	6,138,798	4,141	79,069	13,623	65,446
93	7	牡蠣	64.76	151,800	295,786	3,500,392	1,814,600	1,685,792	4,567	54,052	28,020	26,031
94	7	牡蠣	57.56	152,000	227,083	4,458,772	2,577,525	1,881,247	3,945	77,463	44,780	32,683
95	7	牡蠣	57.20	128,000	244,746	8,085,008	1,948,000	6,137,008	4,279	141,346	34,056	107,290
96	7	牡蠣	76.40	189,000	487,688	7,245,910	2,991,350	4,254,560	6,383	94,842	39,154	55,688
97	7	牡蠣	79.72	211,000	573,262	10,273,480	3,271,300	7,002,180	7,191	128,870	41,035	87,835
98	7	牡蠣	84.20	212,000	375,473	6,148,110	2,846,460	3,301,650	4,459	73,018	33,806	39,212
99	7	牡蠣	78.40	180,000	189,313	2,558,136	3,676,160	-1,118,024	2,415	32,629	46,890	-14,261
100	7	牡蠣	52.20	81,000	372,041	6,006,410	1,393,000	4,613,410	7,127	115,065	26,686	88,380
101	7	牡蠣	52.94	138,500	417,035	9,265,590	2,752,563	6,513,028	7,877	175,021	51,994	123,027
102	7	牡蠣	59.30	98,000	573,081	5,662,906	2,762,440	2,900,466	9,664	95,496	46,584	48,912
103	7	牡蠣	44.84	72,200	274,797	3,942,785	1,427,000	2,515,785	6,128	87,930	31,824	56,106
104	7	牡蠣	33.96	97,600	408,531	7,070,295	1,951,351	5,118,944	12,030	208,195	57,460	150,735
105	7	牡蠣	34.16	73,200	379,824	5,779,940	1,664,665	4,115,275	11,119	169,202	48,731	120,471
106	7	牡蠣	25.40	80,600	371,604	5,548,080	1,426,800	4,121,280	14,630	218,428	56,173	162,255
107	7	牡蠣	82.98	268,300	320,080	6,385,200	5,879,800	505,400	3,857	76,949	70,858	6,091
108	7	牡蠣	125.38	346,900	723,800	10,041,545	6,682,677	3,358,868	5,773	80,089	53,299	26,790
109	8	牡蠣	32.00	334,300	8,253	743,025	1,493,300	-750,275	258	23,220	46,666	-23,446
110	5	牡蠣	5.00	40,000	13,743	1,588,795	424,000	1,164,795	2,749	317,759	84,800	232,959
111	12	牡蠣	89.00	70,000	350000(條)	7,000,000	30,000	6,970,000	3933(條)	78,652	30,000	78,315
112	18	牡蠣	93.50	480,000	480000(條)	7,440,000	30,000	7,410,000	5134(條)	79,572	30,000	77,594
113	18	牡蠣	93.50	1,086,000	1086000(條)	20,092,000	90,000	20,092,000	11615(條)	214,888	90,000	214,888
114	18	牡蠣	93.50	0	0.00	0	-	=	-	-	-	-
	·					·	·	平均	5,771	120,446	50,099	75,270

備註:自111年起重新建立養殖戶以販售蚵苗為主,收成單位為(條),故總收成量與單位收成量不與歷年資料進行比較。

表 2.11.2-8 85~114 雲林沿海鰻魚養殖標本戶年產量產值表

-	年度	標本戶數	養殖種類	養殖面積	本年放養數量	總收成量	販售總價	成本支出	淨收入	單位收成量	單位總價	單位成本	單位淨收入
				(公頃)	(尾)	(kg)	(NT)	(NT)	(NT)	(kg/公頃)	(NT/公頃)	(NT/公頃)	(NT/公頃)
	85	3	鰻魚	3.776	410,000	22,800	7,686,000	10,467,000	-2,781,000	6,038	2,035,487	2,771,981	-736,494
	86	5	鰻魚	3.968	0	34,280	8,681,414	13,105,159	-4,423,745	8,639	2,187,856	3,302,711	-1,114,855
	87	5	鰻魚	3.968	271,550	21,461	5,452,270	4,474,615	977,655	5,409	1,374,060	1,127,675	246,385
	88	5	鰻魚	3.968	680,000	11,754	3,360,600	17,290,840	-13,930,240	2,962	846,925	4,357,571	-3,510,645
	89	5	鰻魚	3.968	90673	49,212	14,324,009	8,021,633	6,302,376	12,402	3,609,881	2,021,581	1,588,300
	90	5	鰻魚	3.968	400,000	24,399	4,364,432	8,082,105	-3,839,673	6,134	1,099,907	2,036,821	-936,914
	91	6	鰻魚	9.8	730,000	37,015	10,251,384	21,180,180	-10,928,796	3,777	1,046,060	2,161,243	-1,115,183
	92	6	鰻魚	9.8	969,000	73,695	23,812,429	22,252,320	1,560,109	7,520	2,429,840	2,270,645	159,195
	93	6	鰻魚	9.8	522,754	160,885	41,477,110	26,151,936	15,325,174	16,417	4,232,358	2,668,565	1,563,793
	94	6	鰻魚	9.8	0	102,663	29,960,729	12,008,900	17,951,829	10,476	3,057,217	1,225,398	1,831,819
	95	6	鰻魚	9.8	1,201,480	5,572	1,608,760	18,433,357	-16,824,597	569	164,159	1,880,955	-1,716,796
	96	6	鰻魚	10.3	0	87,130	23,423,468	20,910,560	2,512,908	8,459	2,274,123	2,030,151	243,972
	97	6	鳗魚	10.3	319,807	84,322	24,592,193	24,164,464	427,729	8,187	2,387,592	2,346,064	41,527
	98	6	鰻魚	9.8	1,082,450	85,221	23,508,526	23,173,065	335,461	8,696	2,398,829	2,364,598	34,231
	99	5	鰻魚	8.6	0	104,222	44,662,017	16,978,980	27,683,037	12,119	5,193,258	1,974,300	3,218,958
	100	5	鳗魚	8.6	240,000	36,598	26,833,558	13,105,870	13,727,688	4,256	3,120,181	1,523,938	1,596,243
	101	5	鰻魚	8.6	0	5,205	5,746,000	2,403,800	3,342,200	605	668,140	279,512	388,628
	102	4	鳗魚	8.6	0	5,915	5,789,500	2,190,800	3,598,700	688	673,198	254,744	418,453
	103	4	鰻魚	6.6	470,000	1,785	1,100,570	22,199,800	-21,099,230	270	166,753	3,363,606	-3,196,853
	104	5	鰻魚	6.3	0	63,218	36,333,616	16,711,999	19,621,617	10,035	5,767,241	2,652,698	3,114,542
	105	5	鰻魚	6.3	0	32,987	21,195,402	6,997,700	14,197,702	5,236	3,364,350	1,110,746	2,253,603
	106	5	鳗魚	6.3	578,000	5,771	2,706,075	42,893,350	-40,187,275	916	429,536	6,808,468	-6,378,933
	107	6	鳗魚	8.2	0	56,737	38,547,420	13,178,200	25,369,220	6,919	4,700,905	1,607,098	3,093,807
	108	5	鰻魚	7.6	210,000	32,515	25,319,950	20,728,000	4,591,950	4,278	3,331,572	2,727,368	604,204
	109	3	鳗魚	7.0	0	0	0	5,336,000	-5,336,000	30,725	16,308,855	762,286	-762,286
	110	3	鰻魚	7.0	0	0	0	5,474,000	-5,474,000	0	0	782,000	-782,000
	111	8	鳗魚	11.0	0	72,695	21,971,720	18,337,011	4,374,034	6,609	1,997,429	1,667,001	397,639
	112	10	鰻魚	18.0	0	134,684	61,792,550	7,961,055	51,757,267	7,482	3,432,919	442,281	2,875,404
	113	10	鰻魚	17.6	1,047,310	127,522	74,892,068	40,590,841	34,301,227	7,246	4,255,231	2,306,298	1,948,933
	114	10	鰻魚	19.3	902,712	61,435	28,984,610	43,652,087	-14,667,477	3,183	1,501,793	2,261,766	-759,973
									平均	6,875	2,801,855	2,103,002	153,624

表 2.11.2-9 85~114 雲林沿海文蛤混養養殖標本戶年產量產值表

年度	標本戶數	養殖種類	養殖面積 (公頃)	本年放養數量 (個/尾)	總收成量 (kg)	販售總價 (NT)	成本支出 (NT)	淨收入 (NT)	單位收成量 (kg/公頃)	單位總價 (NT/公頃)	單位成本 (NT/公頃)	單位淨收入 (NT/公頃)
85	6	文蛤 蝦 虱目魚	18.4	146,925,000 75,000 7,650	186,428 45	11,565,000	2,818,420	8,746,580	10,132 2	628,533	153,175	475,358
86	4	文蛤 蝦 虱目魚	9.6	3,750,000 260,000 4,000	97,980 927	8,119,200	4,060,729	4,058,471	10,206 97	845,750	422,993	422,757
87	4	文蛤 蝦	9.6	6,700,000 2,990,000	25,500 1,545	2,598,350	4,137,840	-1,539,490	2,656 161	270,661	431,025	-160,364
88	4	<u>見目魚</u> 文蛤 蝦	9.6	5,200 7,200,000 2,300,000	155,192 2,070	5,816,185	2,525,540	3,290,645	16,166 216	605,853	263,077	342,776
89	4	虱目魚 文蛤 蝦	9.6	8,000 2,600,000 1,360,000	24,632 744	1,630,600	1,966,950	-336,350	2,566 78	169,854	204,891	-35,036
90	4	虱目魚 文蛤 蝦	9.6	4,000 14,560,000 2,650,000	127,706 874	4,017,879	2,220,568	1,797,311	13,303 91	418,529	231,309	187,220
91	4	虱目魚 其他 文蛤	9.6	12,000 1,000 5,180,000	46,800	2,010,200	1,429,437	580,763	4,875	209,396	148,900	60,496
		蝦 虱目魚 其他		1,370,000 3,800 1000	284	,, ,,	, ., .		30		.,	
92	4	文蛤 蝦	9.6	9,782,800 1,036,000	60,523 15	2,311,151	2,770,191	-459,040	6,304 2	240,745	288,562	-47,817
93	4	虱目魚 文蛤 蝦	9.6	3700000 300000	53,000 485	1,033,500	2,739,320	-1,705,820	5,521 51	107,656	285,346	-177,690
94	4	虱目魚 文蛤 蝦	9.6	6,500 13,169,500 1,177,000	167,544 412	4,606,120	2,582,896	2,023,224	17,453 43	479,804	269,052	210,752
95	4	虱目魚 文蛤 蝦	9.6	7,600 10,200,000 550,000	100,704 2,420	4,196,927	4,166,370	30,557	10,490 252	437,180	433,997	3,183
96	4	虱目魚 文蛤 蝦	9.6	4,500 3800000 200000	32,400 123	1,439,000	2,488,983	-1,049,983	3,375 13	149,896	259,269	-109,373
97	4	虱目魚 文蛤 蝦	9.6	2,000 9,600,000 1,350,000	57,424 133	2,066,583	2,203,489	-136,906	5,982 14	215,269	229,530	-14,261
98	4	虱目魚 文蛤	9.6	5,500 4600000	93,776	2,914,951	2,270,735	644,216	9,768	303,641	236,535	67,106
99	4	蝦 <u>虱目魚</u> 文蛤	9.6	600,000 8,000 2200000	23,000	603,700	2,033,900	-1,430,200	2,401	62,885	211,865	-148,979
100	4	蝦 虱目魚 文蛤	8.9	500,000 1500 18,570,000	97,619	2,489,220	3,974,725	-1,485,505	10,982	279,688	446,598	-166,911
101	4	蝦 虱目魚等 文蛤	8.9	535,000 6,200 0	120	176,000	1,457,740	-1,281,740	96	19,775	163,791	-144,016
102	4	蝦 虱目魚等 文蛤	8.9	0 0 31,342,000	850 0 106,616	3,465,700	3,237,480	228,220	11,979	389,404	363,762	25,643
103	4	蝦 虱目魚等	8.9	483,000 12,300 10,300,000	60 875	1,261,900	2,185,270	-923,370	7 98	141,787	245,536	-103,749
		文蛤 蝦 虱目魚等		450,000 3,600	22,740 58 0				2,555 7 0			
104	4	文蛤 蝦 虱目魚等	8.9	10,730,000 130,000 4,150	50,600 522	1,780,540	2,239,565	-491,665	5,685 59	200,061	251,637	-55,243
105	4	文蛤 蝦 虱目魚等	8.9	23,320,000 245,500 9,000	94,888 270 133	3,591,200	3,042,811	663,389	10,707	403,506	341,889	74,538
106	4	文蛤 蝦 虱目魚等	8.9	31,046,000 185,500 108,900	114,778 35 0	5,669,900	3,145,100	2,524,800	12,900	637,067	353,382	283,685
107	5	文蛤 蝦 虱目魚等	9.1	20,220,000 550,000 7,800	30,138 0 0	1,646,700	3,330,526	-1,683,826	3,312	180,956	365,992	-185,036
108	5	文蛤 蝦 虱目魚等	9.1	19,300,000 735,000 3,300	196,661 80 0	6,790,980	4,683,944	2,107,036	21,620	746,262	514,719	231,542
109	12	文蛤 蝦	19.9	23,000,000 9,336,000	84,613 7,763	10,717,330	4,571,181	6,154,919	4,704	538,559	229,708	309,292
		虱目魚等 布氏鰯鰺 變身苦		12,800 700 135	886 138 210							
110	9	文蛤 蝦 虱目魚等	19.6	19,100,000 21,000,000 18,850	102,078 8,742 3,790	12,449,130	5,783,150	9,779,630	5,861	636,133	295,511	499,726
		變身苦 瓜子蠟 草蝦		6,420 600 50,000	0 0 96							
111	4	布氏鰯鯵 文蛤	11.1	3,200 52,200,000	42,116	4,551,499	5,240,706	-689,207	3794.2	410,045	472,136	-62,091
		風目魚 變身苦 白蝦		500 200 700,000								
112	4	文蛤 虱目魚 變身苦	11.5	600,000 7,000 370	95198 900	4,711,671 90,180	2,461,500	2,250,171	8278.1	409,711	214,043	195,667
113	8	白蝦 沙蝦 文蛤	14.5	200,000 150000 104,588,000	48487.6	10,020	8,297,090	4,514,025	3344.0	883,525	572,213	311,312
		虱目魚 變身苦 白蝦		500 2,800 3,100,000								
114	8	少蝦 文蛤 虱目魚	18	50000 101,303,200 2,350	51893.8	5,554,602	2,942,436	2,612,166	2883.0	308,589	163,469	145,120
		變身苦 白蝦		2,350 2,100 1,700,000								
		沙蝦						平均	4,717	377,691	302,130	81,187

表 2.11.2-10 111~114 雲林沿海鱸魚養殖標本戶年產量產值表

年度	標本戶數	養殖種類	養殖面積	本年放養數量	總收成量	販售總價	成本支出	浄收入	單位收成量	單位總價	單位成本	單位淨收入
			(公頃)	(尾)	(kg)	(NT)	(NT)	(NT)	(kg/公頃)	(NT/公頃)	(NT/公頃)	(NT/公頃)
111	3	鱸魚	11.1	386,291	428,559	34,428,757	11,160,712	24,881,507	38,609	3,101,690	1,005,470	2,241,577
112	3	鱸魚	11.1	240,000	237,003	22,279,746	16,844,890	5,434,856	21,352	2,007,184	1,517,558	489,627
113	3	鱸魚	11.1	400,000	214,792	22,894,795	14,924,337	7,970,458	19,351	2,062,594	1,344,535	718,059
114	3	鱸魚	11.1	513,037	50,000	5,620,000	17,334,933	-11,714,933	4,505	506,306	1,561,706	-1,055,399
								平均	20,954	1,919,444	1,357,317	598,466

表 2.11.2-11 111~114 雲林沿海鯛魚養殖標本戶年產量產值表

年度	標本戶數	養殖種類	養殖面積	本年放養數量	總收成量	販售總價	成本支出	淨收入	單位收成量	單位總價	單位成本	單位淨收入
			(公頃)	(尾)	(kg)	(NT)	(NT)	(NT)	(kg/公頃)	(NT/公頃)	(NT/公頃)	(NT/公頃)
111	1	鯛魚	2.5	580,000	24,360	1,217,931	777,000	440,931	4,872	243,586	155,400	88,186
112	1	鯛魚	2.5	100,000	31,380	1,757,308	697,000	1,060,308	12,552	702,923	278,800	424,123
113	1	鯛魚	2.5	222,000	29,245	2,051,216	3,574,307	-1,523,091	11,698	820,486	1,429,723	-609,236
114	1	鯛魚	2.5	102,000	-	-	2,748,218	-2,748,218	-	-	1,099,287	-1,099,287
								平均	7.280	441 749	740.803	(299 054)

表 2.11.2-12 111~114 雲林沿海蝦類養殖標本戶年產量產值表

年度	標本戶數	養殖種類	養殖面積	本年放養數量	總收成量	販售總價	成本支出	淨收入	單位收成量	單位總價	單位成本	單位淨收入
			(公頃)	(尾)	(kg)	(NT)	(NT)	(NT)	(kg/公頃)	(NT/公頃)	(NT/公頃)	(NT/公頃)
111	2	泰國蝦	2.4	1,388,000	2,462	1,139,692	1,632,050	-492,359	1,009	467,087	668,873	-201,786
112	2	泰國蝦	1.5	300,000	3,906	1,785,364	2,115,000	-279,636	2,604	1,190,242	1,410,000	-186,424
113	2	泰國蝦	3.5	580,000	3,552	1,528,351	1,117,400	410,951	1,015	436,672	319,257	117,415
114	2	泰國蝦	3.5	840,000	120	46,092	1,979,400	-1,933,308	34	13,169	565,543	-552,374
								平均	1,166	526,792	740,918	(205,792)

2.11.3 雲林漁業統計年報資料分析

本文資料來源為漁業署漁業統計年報中之魚類別及漁業種類別,統計時間自民國95年至113年止,共19年。雲林縣漁獲總量前期96~101年較為豐富,而後整體呈現下降趨勢(如圖2.11.3-1),平均為56,268公噸/年。漁獲量最高為民國97年,產量81,647公噸;最低為民國113年,產量僅34,760公噸。

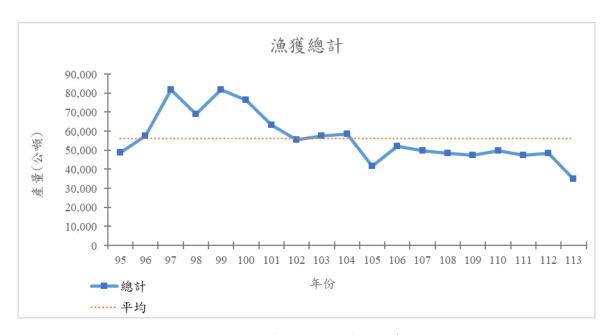


圖 2.11.3-1 95 年至 113 年漁獲總產量圖

近海漁業(圖2.11.3-2a)在中期民國99年至民國106年捕獲量較高,前後期較低,平均為214公頓/年。漁獲量最高為民國100年有345公頓;最低為民國95年僅92公頓,而民國107年及113年無捕撈紀錄。沿岸漁業(圖2.11.3-2b)在中期民國99年至民國106年捕獲量較低,前後期較高,平均為223公頓/年。漁獲量最高為民國113年有961公頓,次高為98年有357公頓;最低為民國106年為33公頓。

雲林縣近海漁業及沿岸漁業個別分析時變動大,趨勢不穩定, 因此將兩者據以分析加總發現呈現互補狀態(圖2.11.3),沿岸漁業 捕獲量較高的時期近海漁業捕獲較低;反之,沿岸漁業捕獲量較低 的時期近海漁業捕獲量較高,在民國113時捕撈產量較高。漁獲量 平均為370公噸/年。最高為民國113年有961公噸;最低為民國95年 為134公噸。

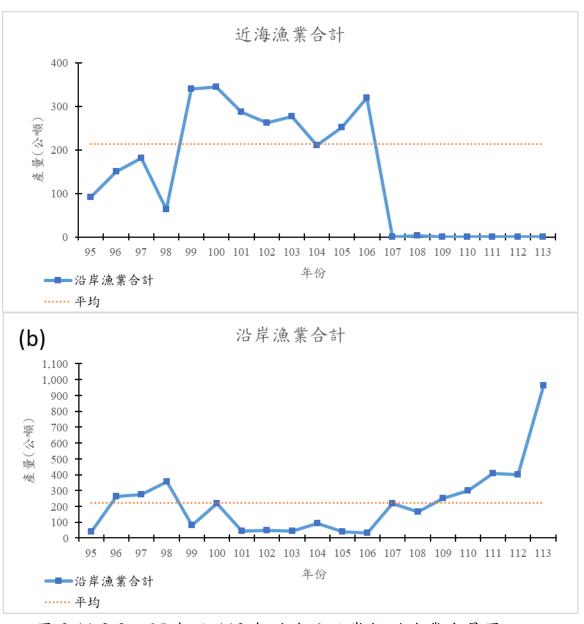


圖 2.11.3-2 95 年至 113 年近海及沿岸個別漁業產量圖

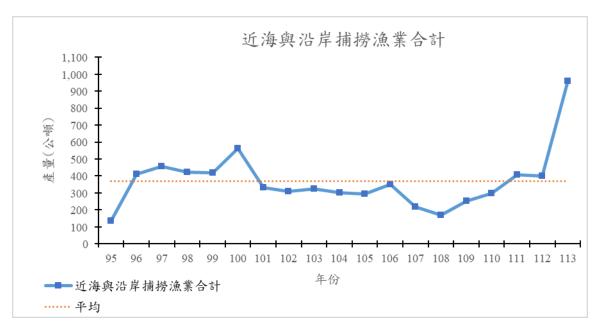
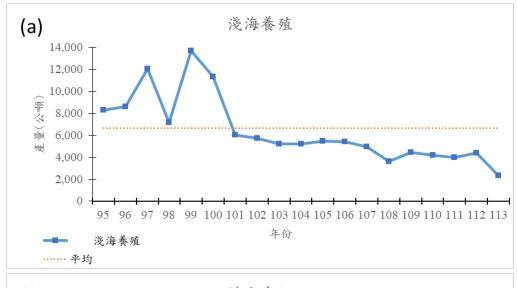



圖 2.11.3-3 95 年至 113 年近海及沿岸漁業總產量圖

雲林縣淺海養殖為利用潮間帶及低潮線以外之淺海區域養殖,產量在民國95年至100年產量偏高,但每年起伏不定,而民國100年後產量雖較前幾年低,但整體趨於穩定,之後變動不大(圖2.11.3-4a)。產量平均為6,665公噸/年,最高為民國99年有13,689公噸,最低為民國113年僅2,314公噸。鹹水魚塭在民國95年至100年間產量逐年上升,之後趨於穩定,在民國105年與113年大幅下降。產量平均為38,636公噸/年,最高為民國100年有50,752公噸,最低為民國95年僅19,672公噸。最新資料為113年產量27,949公噸。淡水魚塭在民國95年至98年間產量較高,之後逐年下降,到民國101年後趨於穩定(圖2.11.3-4c)。產量平均為10,825公噸/年,最高為民國97年有28,264公噸,最低為民國109年僅2,140公噸。最新資料為113年產量3,537公噸。

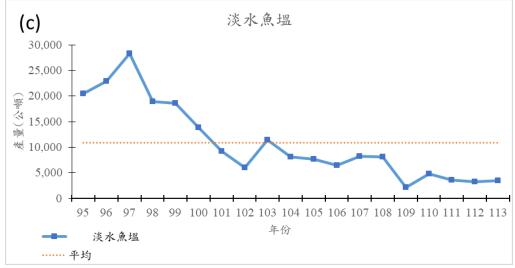


圖 2.11.3-4 95 年至 113 年各類養殖漁業產量圖

雲林縣經濟性漁獲種類主要以文蛤、牡蠣、鰻魚、吳郭魚、白 蝦、烏魚、虱目魚、白姑魚、多鱗四指馬鮁等為大宗(圖2.11.3-5), 其中又以文蛤產量最為龐大,約占總產量的60%。

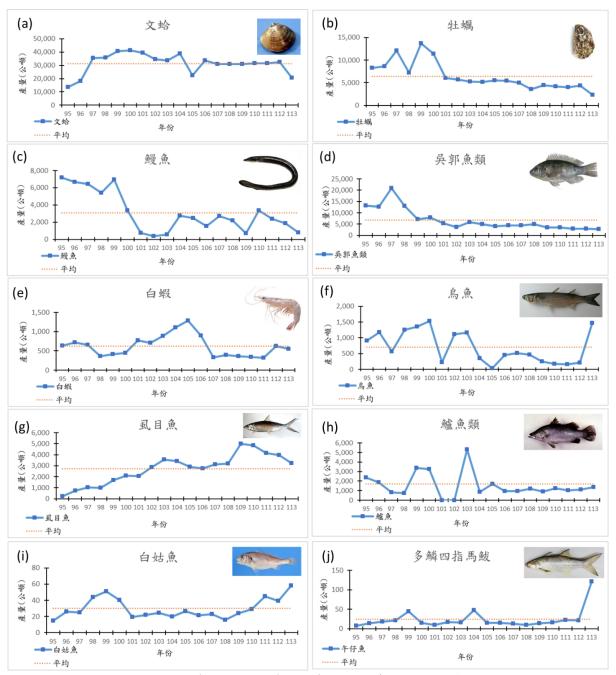


圖 2.11.3-5 95 年至 113 年經濟性漁獲種類產量圖

文蛤產量在民國96年前較少,97年產量大幅提升且持續至今, 僅在民國105年因霸王寒流導致產量低,其他年份產量皆穩定(圖 2.11.3-5a)。產量平均為31,397公噸/年,最高為民國100年有41,234公 噸,最少為民國95年僅13,576公噸。最新資料為113年有20,569公噸。

牡蠣產量在民國100年前較高,101年後大幅降低,產量雖不及早期,但卻穩定至今,每年依然有5,000公噸左右,但於民國113年明顯下降(圖2.11.3-5b)。產量平均為6,436公噸/年,最高為民國99年有13,689公噸,最少為民國113年僅2,314公噸。

鰻魚產量在民國100年前較高,101年~103年急遽減少,104年後

些微回升(圖2.11.3-5c)。產量平均為3,080公噸/年,最高為民國95年有7,163公噸,最少為民國102年僅376公噸。最新資料為113年有808公噸。

吳郭魚產量民國98年前較高,99年後降低,產量雖不及早期, 但卻穩定至今(圖2.11.3-5d),產量平均為6,769公噸/年,最高為民國 97年有20,945公噸,最少為民國113年有2,752公噸。

白蝦產量民國103年~106年較高,其餘時間變動不大(圖2.11.3-5e)。產量平均為623公噸/年,最高為民國105年有1,283公噸,最少為民國107年僅328公噸。最新資料為113年有551公噸。

烏魚產量前幾年變動較大,近幾年才趨於穩定(圖2.11.3-5f)。產量平均為703公噸/年,最高為民國99年有1,527公噸,最少為民國105年僅32公噸。最新資料為113年有1,471公噸。

虱目魚產量自民國95年來至今一直呈現穩定上升趨勢,從民國95年產量為228公噸,到民國109年已達5,002公噸(圖2.11.3-5g)。產量平均為2,732公噸/年,最高為民國109年有5,002公噸,最少為民國95年僅228公噸。最新資料為113年有3,233公噸。

鱸魚類產量在民國103年以前變動較大,民國104年後則呈穩定趨勢(圖2.11.3-5h)。產量平均為1,715公噸/年,最高為民國103年有5,314公頓,最少為民國101、102年無漁獲紀錄。最新資料為113年有1.389公噸。

白姑魚歷年產量穩定,在民國98年至100年偏高,達40公噸以上, 其他年份皆在20公噸左右(圖2.11.3-5i),整體產量平均為30公噸/年, 最高為民國99年有51公噸;最低為民國95年僅15公噸。最新資料為 113年產量58公噸。

多鱗四指馬鮁歷年產量穩定,在民國99年及民國104年偏高達40公噸以上,其他年份皆在15公噸左右(圖2.11.3-5j),整體產量平均為24公噸/年,最高為民國113年有121公噸;最低為民國95年僅7公噸。

整體來看,除文蛤為漁獲最主要物種,產量較穩定外,鰻魚、 牡蠣、吳郭魚等皆有下降趨勢,鱸魚類近期較穩定,而白姑魚、虱 目魚產量則為穩定上升,烏魚與多鱗四指馬鮁於民國113年明顯上 升。

2.12 海域地形

本年度海域地形測量在天候許可下順利展開,逐步完成平面控制點測量 與檢測、高程控制點水準測量與檢測、航拍攝影以及LiDAR空載雷射掃描作 業。隨後完成空中三角測量、數值航測圖繪製及測量報告的製作。

第三季期間已完成整體海陸域地形測量作業,海域水深測量路徑如圖 2.12-1 所示。本次作業涵蓋整個監測範圍之水深測線配置,並依據海象條件 與作業時程分批施測,圖中標示各區域之施測日期與路徑分布情形。

在三條崙以北,屬原環評監測範圍內水深25公尺以淺區域,測線配置為東西向斷面每400公尺間隔、南北向測線每200公尺間隔,以掌握近岸地形變化及泥砂動態。

在三條崙以南,則依據《海岸管理法》及行政院公共工程委員會協商會議決議,擴增為全區監測範圍之一部分,該區測線配置為 東西向斷面每 800 公尺間隔。整體測量結果顯示:

濁水溪口以南海域的等深線走向大致呈北北東-南南西方向,展現出明顯的地形特徵。潮間帶範圍(+2m至-2m)由濁水溪口南岸寬約1,353公尺,逐漸擴展至電廠出水口導流堤北側,寬約1,662公尺,平均坡度約為1/377,顯示潮間帶範圍往北的逐步擴張。分析濁水溪口以南等深線的坡度特性:於等深線於-2m至-5m間平均坡度約為1/328,-5m至-10m等深線平均坡度為1/120,-10m至-20m等深線平均坡度為1/260。

過去30年的地形變化以50m網格化資料計算結果如圖2.12-2所示,展現了不同區域的地形演變特徵。在麥寮區西北海堤外溫排水導流堤北側,地形變化受到工業區開發以來的上游堤頭欄砂效應影響,等深線逐年向外推移,形成了顯著的淤積區域。濁水溪河口及麥寮港以北海域的淤積趨勢尤為明顯,維持了多年的穩定t成長狀態。在麥寮港以南至三條崙之間的區域,-10m至-20m水深範圍內顯現出淤積的特徵,而-10m水深至海岸線之間的沙洲則持續向陸地推移,反映出淺水區的動態演變。新興區南側至台子村漁港沿岸呈現出不同的侵淤特性:近岸部分以侵蝕為主,遠岸部分則有一定的淤積發生,但整體以侵蝕為主,侵蝕量超過淤積量。在台子村漁港至外傘頂洲之間,沙洲外側水深5m以淺的區域主要受到侵蝕影響,地形不斷向海側縮減。同時,外傘頂洲則顯示出持續向東南方向旋轉移動的趨勢,沙洲的西北側受北向漂沙影響,淤積效應較為顯著。此外,圖2.12-3展示了2023年至2024年間

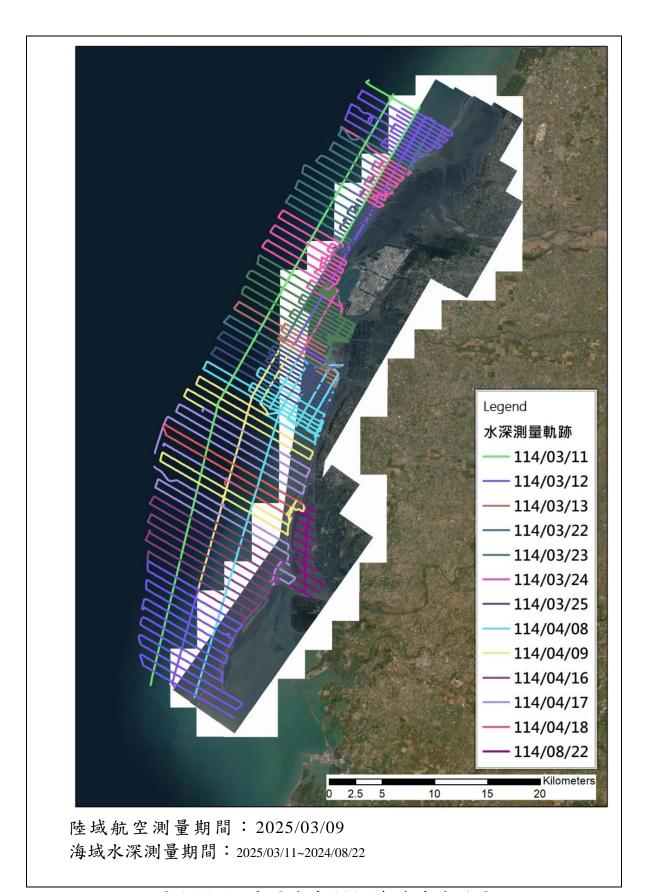


圖 2.12-1 本區海域 2025 年海域地形圖

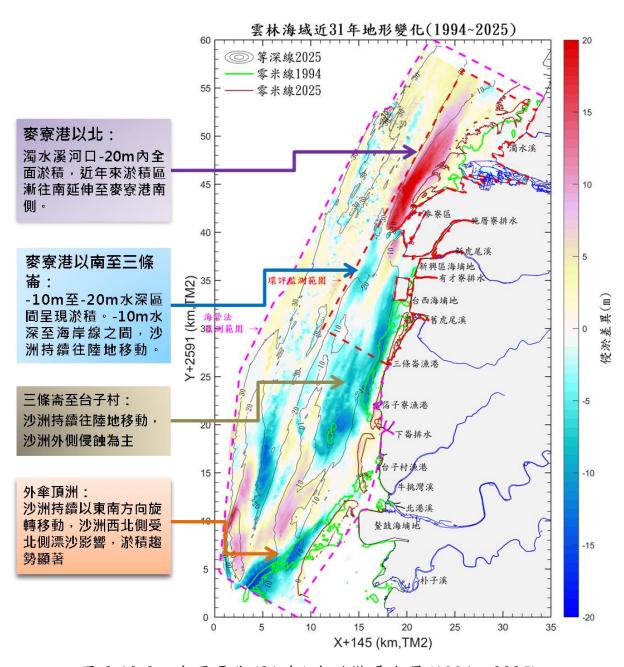


圖 2.12-2 本區長期(31年)地形變遷成果(1994~2025)

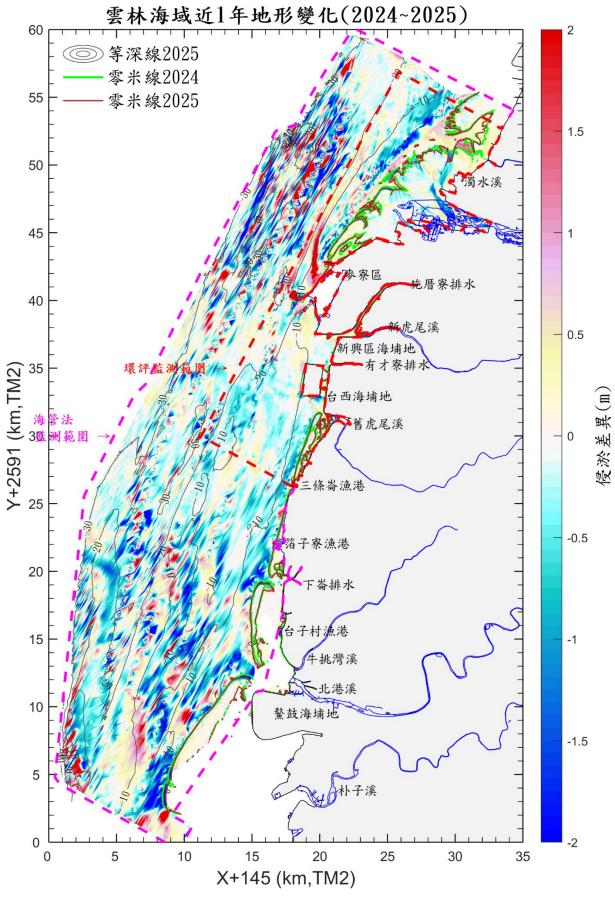


圖 2.12-3 本區地形測量變動量計算圖(2024~2025)

2.13 海象

一、潮汐調查

潮位測量所使用之儀器為感應水壓力式的潮位計,具資料自記功能,其工作原理係利用經校正後之壓力感應器感受水壓力變化,並將感應到的變化轉換為電壓值,儲存在記憶體內。待觀測一段時間後,將存於記憶體內的電壓記錄讀出,然後換算為壓力感應器所在位置之上的水層厚度,也就是相對水位,最後再經壓力感應器位置高程校正,得到的即是絕對水位高程。整套系統包括一水壓感應器定置於最低潮位之下,並由電纜將訊號傳到岸上之數位記錄器,而後藉由無線通訊即時將資料回傳至水工所資料庫,進行線上資料展示及後續品管與分析。

1. 資料分析流程

潮位站的原始水位記錄間隔與中央氣象局規範同步均為6分鐘,經將資料取樣為每小時一筆,以進行各項分析,以下是幾個基本的資料分析方法:

- (1) 繪製潮位逐時變化圖,直接由波形來描述潮位變化特徵。
- (2) 統計分析如平均潮位(差)、觀測期間最高潮位、最低潮位 等,用於判別與往年監測結果之差異。
- (3) 進行調和分析統計各分潮振幅、頻率、相位延時等資料。

2. 調查結果說明

本季觀測期間從2025年7月~9月,測站包含麥寮港南側之MS測站 (X(E)=164552, Y(N)=2630079)及箔子寮港之PZ測站 (X(E)=161174, Y(N)=2613261)。麥寮站、箔子寮站本季正常量測,資料觀測成功率達100%。

圖2.13-1~圖2.13-2為本季各月實測潮位逐時變化圖,圖2.13-3~ 圖2.13-4為本季實測潮位頻譜與逐時變化圖,二站的潮位週期以半日為主,全日次之,潮型包絡線的變化趨勢一致。麥寮站的潮汐變動振幅明顯較箔子寮站為大,此與以往觀測之麥寮站平均潮差較大結果一致。統計結果如表2.13-1~表2.13-2,麥寮站本季各月平均潮差介於2.621m~2.698m(歷年量測介於2.244m~3.177m)、箔子寮站介於2.197m~2.265m(歷年量測介於1.929m~2.380m),兩站本季測值在歷年變動範圍內。兩站平均潮差相差約0.43m;最高潮位麥寮站為+2.445m,最低潮位為-1.543m;箔子寮站最高潮位為+2.206m,最低潮位為-1.234m。

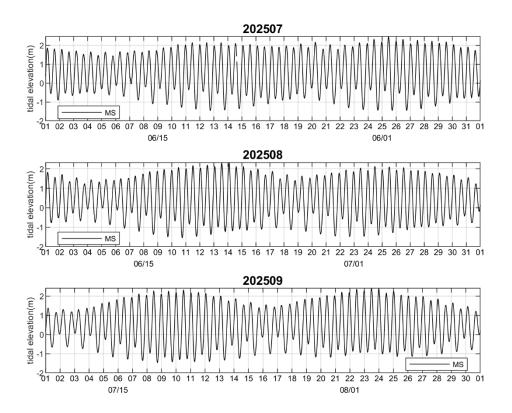


圖 2.13-1 MS 測站 2025 年 7~9 月各月實測潮位逐時變化圖

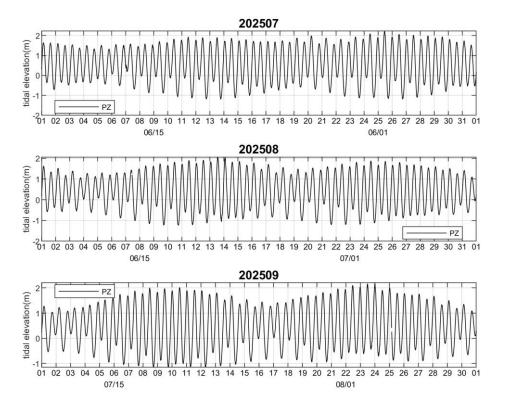


圖 2.13-2 PZ 測站 2025 年 7~9 月各月實測潮位逐時變化圖

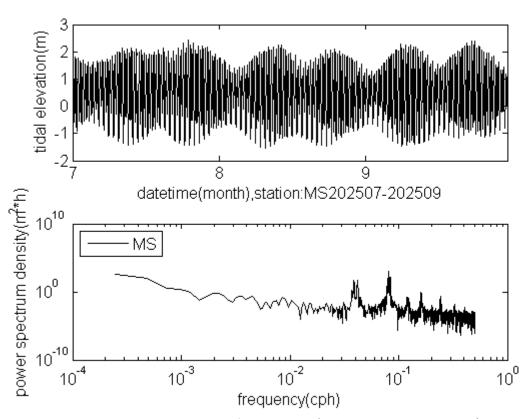


圖 2.13-3 MS 測站 2025 年 7~9 月實測潮位頻譜與逐時變化圖

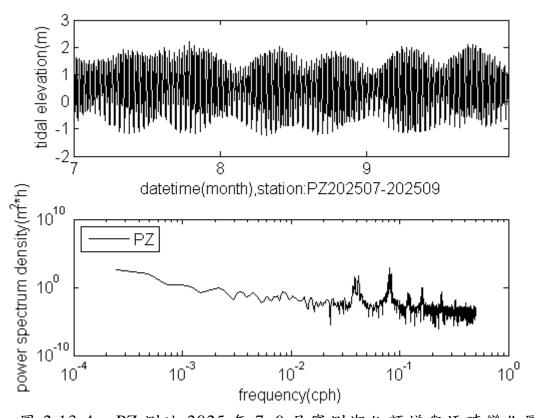


圖 2.13-4 PZ 測站 2025 年 7~9 月實測潮位頻譜與逐時變化圖

表 2.13-1 麥寮潮位基準面高程統計(基隆中潮系統)

unit: m

										W11111 111
時間	平均高	平均	平均低	最高	日	時	最低	日	時	平均潮差
(年月)	潮位	潮位	潮位	潮位		叮	潮位	i)	叮	十均彻左
202507	1.929	0.537	-0.770	2.445	25	10	-1.448	12	18	2.698
202508	1.767	0.418	-0.854	2.243	13	13	-1.543	10	18	2.621
202509	1.829	0.461	-0.822	2.389	23	12	-1.453	8	17	2.651

表 2.13-2 箔子寮潮位基準面高程統計(基隆中潮系統)

unit: m

時間	平均高	平均	平均低	最高	日	時	最低	日	時	平均潮差
(年月)	潮位	潮位	潮位	潮位	П	叮	潮位	П	吋	十均溯左
202507	1.718	0.539	-0.547	2.206	25	11	-1.180	12	18	2.265
202508	1.553	0.413	-0.645	2.017	13	13	-1.234	10	18	2.197
202509	1.620	0.468	-0.614	2.098	22	11	-1.144	9	18	2.234

二、波浪調查

調查測站為台西海域觀測樁代號THL1(二度分帶坐標 X(E)=162761,Y(N)=2628977),位於麥寮工業港南防波堤西南方 約2公里處,平均水深約11m,點位如圖2.13-5,量測項目為波高、 週期與波向,觀測系統採底碇自記式兼具測波功能之音波都普勒 式海流剖面儀(簡稱ADCP),資料頻率每兩小時統計一筆。

1. 資料分析流程

波浪調查主要在求得波浪之波高、週期及波向。波高、週期之 分析方法基本上可分為兩種,一為逐波(wave-by-wave)分析法;另 一為波譜(wave spectrum)分析法。經由實際分析結果發現逐波分 析法會造成波浪之週期偏大,此現象於小波高時更為明顯,因此 較不適用於實測資料分析(Bishop and Donelan, 1987; Kao and Chiu, 1994; Townsend and Fenton, 1995)。而頻譜分析法只要波高 計架設位置盡可能接近水面則利用線性理論分析結果可將誤差控 制在5%以內,因此本計畫以波譜分析法計算波浪相關統計參數。 方向波譜分析則利用水壓式波高計配合電磁式流速計所測得雙軸 流速之水平雨方向流速以決定方向譜之方法(即所謂 p-u-v方 法), 其推求原理類似於Longuet-Higgins et al. (1963), 以heavepitch-roll buoys求方向譜的方法。因 p-u-v方法僅量測三個獨立的 波浪相關量,故對波浪方向譜之方向分布函數解析度受限,使得方 向譜產生負的邊翼(negative side lobes),為修正此缺失乃根據 Longuet-Higgins et al. (1963)之提議利用二項式權重函數(binomial weighting function)描述方向分布函數,進一步解析方向波譜並求

得平均波向與尖峰波向等參數。

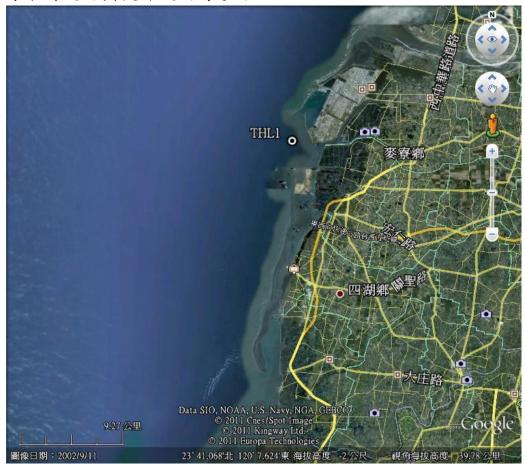


圖 2.13-5 雲林離島產業園區波浪現場調查測站位置圖

2. 調查結果說明

本季觀測期間為2025年7~9月,執行進度如表2.13-3,自記式ADCP計進行三次儀器更換(7/26、8/22與9/19),另上季統計至6月18日,6月完整資料於本季第一次儀器回收後納入統計。

根據監測結果繪製波浪時序列如圖2.13-6,為資料分析並蒐集觀測期間發生於西北太平洋之熱帶氣旋路徑資料如圖2.13-7。本季明顯受颱風影響海象波高呈現較大的變動,一般時期示性波高小於0.5米,颱風或低壓影響時期有明顯大於1.5米之局部較大值。例如6月13日為低壓西南風;7月WIPHA與DANAS颱風;8月為PODUL颱風影響時期。統計各月資料如表2.13~4,就完整6~8月而言,月平均波高介於0.41~0.71米,波高範圍除7月因颱風影響時間較長以0.5~1米為主,其餘各月以小於0.5米為主,主週期各月皆為4~5秒,波向西南西轉西。最大示性波高2.06米,對應尖峰週期與波向為6秒、西北,測於7月7日2時,值DANAS颱風中心在台灣本島時期(布袋登陸、桃園新竹交界出海)。

本年度監測結果與歷年之比較,以圖2.13-8歷年月平均及月最大示性波高時序列與分布範圍說明。據時序列圖顯示:月平均波高早期介於0.5~1.5米範圍之年變動,之後受建港影響侷限在0.5~1米範圍變動,近年有恢復到0.5~1.5米範圍之趨勢。年最大示性波高近年主要測得於颱風時期,與早期有時測得於東北季風時期不同。分布範圍圖顯示:近幾年於東北季風時期受麥寮港遮蔽北向風浪平均波高較開發前期衰減約0.2~0.3米。2024年至今除2024年3月月最大示性波高小於歷年(因東北季風偏弱)與2024年11月大於歷年(康芮颱風),其餘各月月平均與月最大示性波高皆於歷年變化範圍內。

表 2.13-3 2025 年第三季波浪調查執行進度表

測站	施測期間	實測資料數	應測資料數	觀測成功率
THL1	2025/06/01~2025/06/30	360	360(自記)	100.0
THL1	2025/07/01~2025/07/31	372	372(自記)	100.0
THL1	2025/08/01~2025/08/31	372	372(自記)	100.0
THL1	2025/09/01~2025/09/19	221	360(自記)	施測中

表 2.13-4 2025 年第三季波浪平均值、分佈範圍與極大值統計

			1 71	- 1 1211	1 7 14	/4 11 .	70 11 7	<u> </u>	HE 191	5 - 1		
		平均	自值	主	要分布範圍		最大值					
測站	施測期間	示性 波高(m)	平均 零切 週期(s)	示性 波高	平均零切週期	平均 波向	示性 波高(m)	對應 尖峰 週期(s)	對應 波向	測得 時間		
THL1	2025/06/01~ 2025/06/30	0.47	4.5	0.0~0.5m (63.3%)	4~5s (66.9%)	WSW (38.3%)	1.92	8.9	WSW	6月13日		
THL1	2025/07/01~ 2025/07/31	0.71	4.9	0.5~1.0m (55.4%)	4~5s (51.9%)	WSW (43.3%)	2.06	6.0	NW	7月7日		
THL1	2025/08/01~ 2025/08/31	0.41	4.9	0.0~0.5m (77.2%)	4~5s (54.3%)	W (34.1%)	1.61	6.3	WSW	8月14日		
THL1	2025/09/01~ 2025/09/19	1 () 34	4.4	0.0~0.5m (82.4%)	4~5s (67.9%)	W (39.4%)	1.22	3.6	WSW	9月7日		

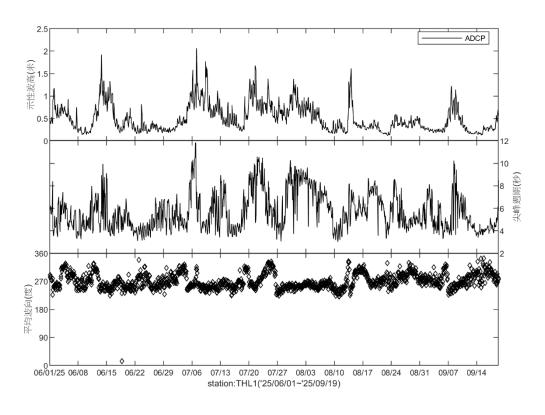


圖 2.13-6 THL1 測站 2025 年 6 月~9 月波浪時序列

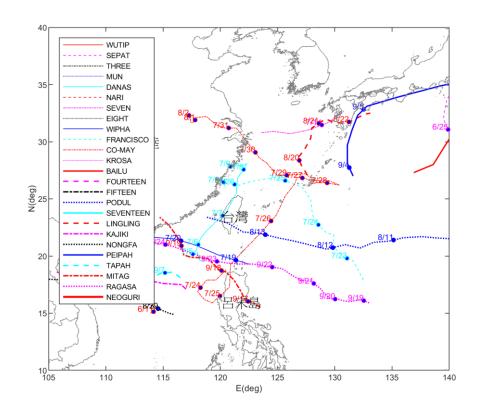


圖 2.13-7 觀測期間颱風中心路徑圖(資料來源 NOAA)

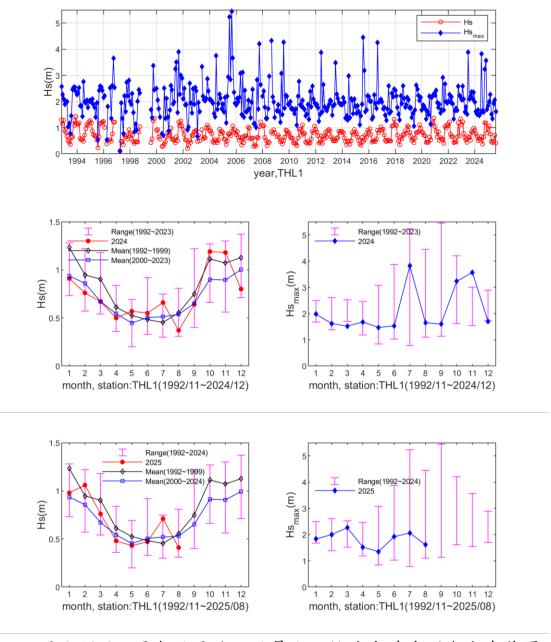


圖 2.13-8 歷年月平均及月最大示性波高時序列與分布範圍

三、海流調查

調查測站為 YLCW(二度分帶坐標 X(E)=162761, Y(N)=2628968), 位於麥寮工業港南防波堤西南方約 2 公里處,平均水深約 11m,點 位如圖 2.13-9,量測項目包含海潮流之流速及流向。以自記方式進 行,並每隔一段時間由潛水夫進行儀器更換或回收。觀測儀器採用 剖面音波式流速流向計進行量測,系統監測頻率為每 5 分鐘收錄經 由 1~2 分鐘平均過後,由底床至海表的多層流速流向資料,統計結 果由水深平均後之資料進行說明。

1. 資料分析流程

定點流速剖面儀為以Eulerian觀點進行調查,資料分析基本上包含數值濾波、統計、平均、頻譜分析等方式分析各分層海流特性,再將分析結果整理為三大類圖表,第一類為逐時變化圖;第二為統計圖表;第三為頻譜調合分析結果,再由各圖表說明海流特性。圖表中流向係海流去向(波向及風向為來向),角度是以正北為0度,順時針遞增。能譜計算方法為將流速資料分段,每段選取2的幂次方(例如1024筆)進行快速傅立葉轉換(FFT),此可得各頻率對應下之流速能量密度,而後將每段資料平均即得流速能譜圖。潮流橢圓為選取四個主要天文潮(O₁、K₁、M₂、S₂)進行調和分析,得知主要分潮之振幅與流向。

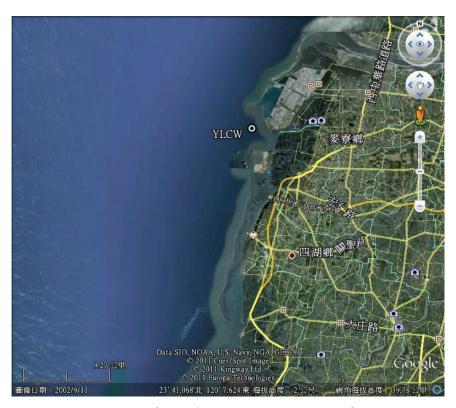


圖 2.13-9 雲林離島產業園區海流現場調查測站位置圖

2. 調查結果說明

觀測期間同波浪,執行進度如表2.13-5。圖2.13-10為本季觀測期間YLCW測站海流經由水深平均過後之流速分量與流速流向時序列,流速分量一如以往以南-北向大於東-西向,亦即流動呈現南-北往復現象。流速大小和流向每日約有4次變化,通常每次流速減至最小時,流向即伴隨轉變,如此週而復始呈現明顯的半日週期性之變化,風力較大時期可明顯測得受到風剪力推動而同風向不隨潮水轉換之風驅流動。此外流速大小也會呈現以半個月為週期之變化,即大小潮之變化。由表2.13-6海潮流流速流向統計顯示:各月流速範圍於25~75公分/秒約佔60%,主流向與淨流流向受洋流帶動偏北。全季最大流速145cm/s流向北,測於7月9日(農曆6/15),為大潮且DANAS颱風往北遠離帶入西南氣流期間所測。

表 2.13-5 2025 年第三季海流調查執行進度表

測站	施測期間	實測資料數	應測資料數	觀測成功率
YLCW	2025/06/01~2025/06/30	8639	8640	100.0
YLCW	2025/07/01~2025/07/31	8925	8928	100.0
YLCW	2025/08/01~2025/08/31	8925	8928	100.0
YLCW	2025/09/01~2025/09/19	5288	8640	施測中

表 2.13-6 2025 年第三季海潮流流速流向統計

測站	施測期間	主要流速 (cm/s)	次要流速 (cm/s)	主要流向	次要流向	淨流 流速 (cm/s)	對應流向	最大 流速 (cm/s)	對應 流向
YLCW	2025/06/01~ 2025/06/30	25.0~50.0 (36.8%)	50.0~75.0 (30.1%)	N (39.9%)	S (34.9%)	11.61	NNE	123.1	N
YLCW	2025/07/01~ 2025/07/31	25.0~50.0 (31.9%)	50.0~75.0 (29.7%)	N (40.1%)	S (31.0%)	15.85	NNE	145.2	N
YLCW	2025/08/01~ 2025/08/31	25.0~50.0 (34.6%)	50.0~75.0 (29.7%)	N (42.1%)	S (30.6%)	13.53	NNE	137.8	N
YLCW	2025/09/01~ 2025/09/19	25.0~50.0 (37.7%)	0.0~25.0 (30.3%)	N (40.9%)	S (34.0%)	9.94	NNE	115.2	N

統計歷年YLCW各測次流速中位數與主流向(圖2.13-11)、最大流速與對應流向(圖2.13-12)、M2分潮流速長軸振幅與方位角(圖2.13-13)及淨流流速與淨流流向(圖2.13-14),結果顯示:流速於麥寮港西防波堤興建完成後在一般統計條件(中位數、M2分潮長軸振幅)略有微幅增加趨勢,另外近幾年東北季風或颱風期間屢次測得超過4節(約2米/秒)之最大流速,其原因與退潮流受西防波堤阻擋產生束縮加速流動有關。2002年西防波堤興建完成後至2008年,YLCW淨流流速與流向分別有逐年遞減與變化範圍逐年增加之趨勢,究其原因西防波堤興建完成後退潮流向受其阻隔與漲潮流向主軸並不一致。近期海域地形之轉變使海流逆時針轉為南-北較一致之流向,淨流流速與流向之變化明顯趨於較為一致之夏冬季淨流流速較大(洋流與風驅流影響),春秋季淨流流速較小,淨流流向由東北季風期轉夏季由偏南向逆時針向岸往偏北向之趨勢。本年度仍持續近幾年之趨勢。

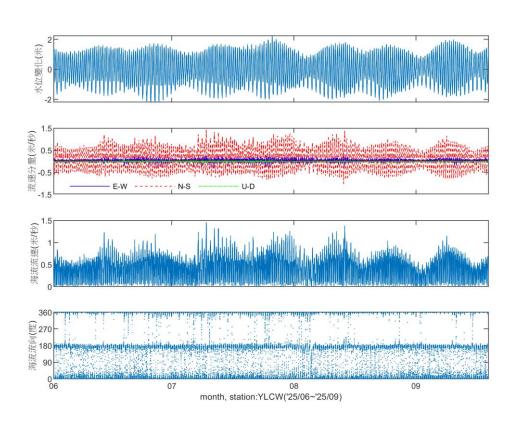


圖 2.13-10 YLCW 測站 2025 年 6 月~9 月海流分量與流速流向時序列

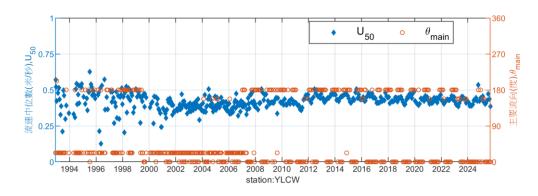


圖 2.13-11 YLCW 歷年流速中位數與主流向

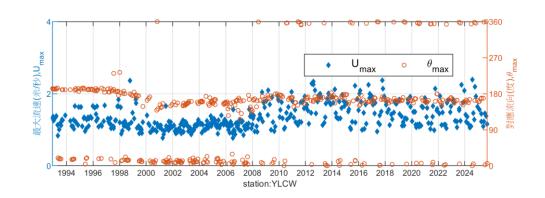


圖 2.13-12 YLCW 歷年最大流速與對應流向

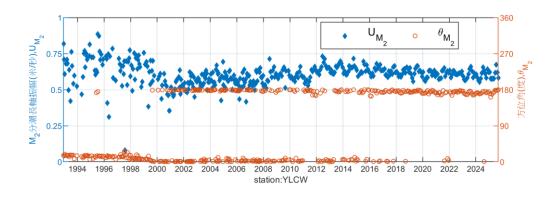


圖 2.13-13 YLCW 歷年 M2 分潮流速長軸振幅與方位角

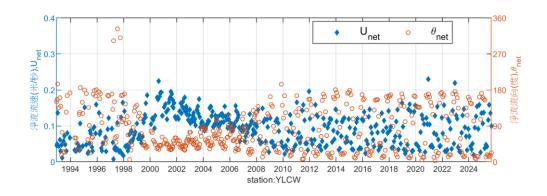


圖 2.13-14 YLCW 歷年淨流流速與淨流流向

第三章 檢討與建議

第三章 檢討與建議

3.1 監測結果綜合檢討分析

3.1.1 空氣品質

一.與歷次監測結果比較

離島產業園區 3 處空品測站之歷次空氣品質監測結果如表 3.1.1-1,綜合比較歷次監測值分析繪如圖 3.1.1-1~圖 3.1.1-9 所示,並與環評報告(80年7月)調查結果比較分析,說明如下:

(一)一氧化碳(CO)

本季所有測站最高 8 小時值及最高小時值介於 0.10~0.20 ppm 及介於 0.20~0.40 ppm 之間,相較於歷次測值(最高 8 小時值 0.11~1.69 ppm,最高小時值 0.20~7.50 ppm),皆能小於或在各測站歷次測值變動範圍內;歷次測值亦均可符合空氣品質標準 8 小時平均值 9 ppm 及小時平均值 31 ppm 之限值。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示, 最高小時值介於 0.9~1.3 ppm 之間,與施工期間監測值比較差異性 小,顯示本工程施工對環境之影響輕微。

(二)二氧化硫(SO₂)

本季所有測站日平均值及最高小時值介於 1.0 ~2.0 ppb 之間及介於 2.0 ~8.0 ppb 之間,與歷次測值比較(日平均值 0.6~18.0 ppb,最高小時 1.1~35.6 ppb),皆能小於各測站歷次測值變動範圍內,歷次測值皆可符合空氣品質標準小時平均值 65 ppb 之限值。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示, 日平均值及最高小時值分別介於 11~14 ppb 及 22~26 ppb 之間, 與施工期間監測值比較,各測站大部分測值均小於環評報告之背 景測值,由上述之分析,本工程施工對環境之影響輕微。

(三)二氧化氮(NO₂)

本季所有測站最高小時值介於 13.0 ~26.0 ppb 之間,與歷次測值比較(1.2~49.0 ppb),皆介於歷次測值變動範圍內,歷次測值皆符合空氣品質標準小時平均值 100 ppb 之限值。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示,

最高小時值介於 8~58 ppb,與環評報告之監測值比較,施工期間 監測值幾乎小於 58 ppb,顯示本工程施工對環境之影響輕微。

(四)臭氧(O₃)

本季所有測站最高 8 小時值及最高小時值介於 47.0~67.0 ppb 之間及 53.0 ~87.0 ppb 之間,與歷次測值比較(最高 8 小時值 7.0~80.0 ppb,最高小時 12.0~90.0 ppb),皆介於歷次測值變動範 圍內,本季三測站測值僅台西國小測值符合臭氧最高8小時平均 值 60ppb;本季三測站小時平均值皆符合 100 ppb 之限值。歷次臭 氧 8 小時平均值超過 60.0 ppb 者僅 19 站次,為台西國小 86 年 12 月(66.0 ppb)、106 年 3 月(63.0 ppb), 鎮安府 106 年 3 月(63.0 ppb), 崙豐漁港駐在所 106 年 3 月(65.0 ppb), 崙豐漁港駐在所 107 年 10 月(60.6 ppb),鎮安府 108 年 1 月(60.6 ppb),鎮安府 108 年 4 月 (63.6 ppb), 台西國小 108 年 10 月(80.0 ppb)及 109 年 1 月(67.3 ppb)、4 月(62.5 ppb)、台西國小 109 年 10 月(68.9 ppb)、鎮安府 109年10月(64.1 ppb)、崙豐漁港駐在所109年10月(65.5ppb)、 崙豐漁港駐在所 110 年 4 月(70.1 ppb)、台西國小 110 年 4 月(63.3 年 3 月(68.3 ppb)、鎮安府 114 年 8 月(67.0 ppb)及崙豐漁港駐在所 114 年 8 月(64.0 ppb)。

另就環評報告於麥寮區及新興區、西區之調查結果顯示,最 高小時值介於 33.0~70.0 ppb 之間,除鎮安府 97 年 5 月 (76.0 ppb)、 98 年 6 月(66.0 ppb)、99 年 5 月(66.0 ppb)、104 年 10 月(65.1 ppb)、 105 年 4 月(67.8 ppb)、108 年 1 月(60.6 ppb) 、108 年 4 月(63.6 ppb)、109 年 4 月(69.7 ppb), 崙豐漁港駐在所 86 年 3 月(88.0 ppb)、94 年 6 月(65.0 ppb)、96 年 8 月(74.0 ppb)、96 年 11 月(72.0 ppb)、97 年 5 月(76.0 ppb)、99 年 3 月(66.0 ppb)、100 年 11 月 (76.0 ppb)、106 年 3 月(65.0 ppb)、106 年 12 月(78.0 ppb)、109 年 4月(64.8 ppb), 台西國小 86年 12月(76.0 ppb)、87年 9月(76.0 ppb)、88 年 6 月(90.0 ppb)、88 年 9 月(73.0 ppb)、96 年 11 月(69.0 ppb)、97 年 5 月(64.0 ppb)、97 年 12 月(64.0 ppb)、98 年 9 月(95.0 ppb)、100年11月(65.0 ppb)、101年5月(79.0 ppb)、104年9月 (66.7 ppb)、107 年 7 月(66.0 ppb)、108 年 10 月(80.0 ppb)、109 年 1月(72.8 ppb)、109年4月(66.7 ppb)、109年10月(63.0 ppb)、 112年1月(72.8 ppb)外,各測站小時最大值測值均接近環評報告 之監測值且皆符合空氣品質標準 100 ppb, 本工程施工對環境之影 響輕微。

(五)總碳氫化合物(THC)及非甲烷碳氫化合物(NMHC)

本季所有測站 THC 之日平均值介於 2.14~2.57 ppm,最高小時測值介於 2.72~3.90 ppm 之間,與歷次測值比較(最高小時值 1.26~5.78 ppm,日平均值 1.12~4.57 ppm) 均位於各測站歷次變動範圍內;各站 NMHC 之日平均值、最高小時測值分別為 0.04~0.08 ppm,以及介於 0.12~0.24 ppm 之間,與歷次測值比較(日平均值 0.05~1.46 ppm,最高小時值 0.05~2.09 ppm) 均小於或位於各測站歷次變動範圍內。

由於目前國內環境品質標準未針對 THC 及 NMHC 訂定限值,故暫無法與法規標準比較,惟本監測工作將持續監測並密切注意其變化情形。另就環評報告於麥寮區及新興區、台西區之調查結果顯示,THC (NMHC 無監測值)最高小時值 1.6~2.5 ppm,與施工期間監測值比較差異甚小,顯示本工程施工對環境之影響輕微。

(六)總懸浮微粒(TSP)

本季所有測站 24 小時值介於 23.0~25.0 μ g/m³, 與歷次測值比較(21~486 μ g/m³),皆在歷次測值變動範圍內。至於歷次測值計有3 站次超出標準:台西國小 86 年 9 月(486 μ g/m³)、海豐漁港駐在所 88 年 12 月(253 μ g/m³)及 113 年 12 月(445.0 μ g/m³),惟總懸浮微粒(TSP)於民國 109 年 9 月 18 日環境部公告之「空氣品質標準」刪除其標準限值。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示, 24 小時值介於 $114\sim199$ $\mu g/m^3$ 之間,與施工期間監測值比較,施工期間監測值除上述 3 站次測值高於標準限值外,各測站測值大多小於 199 $\mu g/m^3$,由上述之分析,本工程施工對環境之影響尚屬輕微。

(七)懸浮微粒(PM₁₀)

本季所有測站日平均值介於 $17.0 \sim 29.0 \, \mu g/m^3$ 之間,與歷次測值比較 $(15 \sim 182 \, \mu g/m^3)$,皆介於各測站歷次變動範圍內,並無異常變化。至於歷次測值計有 4 站次超出標準:台西國小 86 年 9 月 $(174 \, \mu g/m^3)$ 、崙豐漁港駐在所 88 年 12 月 $(182 \, \mu g/m^3)$ 、崙豐漁港駐在所 110 年 4 月 $(102 \, \mu g/m^3)$ 及 113 年 12 月 $(159 \, \mu g/m^3)$ 。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示, 日平均值介於 60.0~120.0 μg/m³之間, 與施工期間監測值比較, 施 工期間監測值除鎮安府 88 年 12 月(123 $\mu g/m^3$),崙豐漁港駐在所 88 年 12 月(182 $\mu g/m^3$),台西國小 86 年 9 月(174 $\mu g/m^3$)、103 年 11 月(122 $\mu g/m^3$)及 113 年 12 月(159 $\mu g/m^3$)測值高於 75 $\mu g/m^3$ 外,各測站測值均小於 75 $\mu g/m^3$,且依據歷年之監測結果分析,污染源主要來自背景(包括交通量之自然成長、環境背景、其他非本工程施工等造成之增量),本工程施工對環境之影響尚屬輕微。

(八)落塵量(Dust Fall)

本季所有測站月平均值介於 3.1~8.5 g/m²/月之間,與歷次測值比較(0.24~63.60 g/m²/月),近期(110 年 Q1 起)各測站於歷次變動範圍相比較高,經詢檢測人員意見觀察到與檢測點位鄰近之太陽能光電場施工啟始時間相符。因本地區為沿海地區,受季節變化及鹽分影響,歷次測值變動區間頗大,由於目前環境品質標準尚未針對落塵量訂定限值,故暫無法與法規標準比較。

二.與同時間環境品質監測站之監測資料比較

為瞭解本計畫鄰近區域整體之空氣品質狀況,必要時將參考環境部於本計畫區附近設置空氣品質自動監測站,如:台西、崙背及麥寮等,可作為同時段比對監測結果數值之參考資料,本季比對台西及麥寮測站,其原始數據如本報告附錄四所示,同時段監測結果與本計畫各監測結果測值差異性不大;本計畫監測報告另外比對台塑公司所設置的西螺測站,其原始數據如本報告附錄四所示,依據同時段西螺測站之監測結果顯示,該測站與本計畫各監測結果測值差異性不大。

表 3.1.1-1 歷年空氣品質監測結果綜合比較表

\square		监测项目	一氧化碳		二氧化碳		二氧化氮	臭氧(ppb)		總碳氧化 合物		非甲烷碳氢 化合物		總懸浮微粒	PM ₁₀	落塵量
		M. Ol All	(ppm) 最高8小時	小時平均值	(ppb)	小時平均值	(ppb) 小時平均值	最高8小時	小時平均值	(non)	小時平均值	(mm)	小時平均值	(ug/m³)	(ug/m³)	(ton/km²/月)
监测站	測定時間		平均值	(最大值)	日平均值	(最大值)	(最大值)	平均值	(最大值)	日平均值	(最大值)	日平均值	(最大值)	24小時值	日平均值	毎月値
	85年第4季 86年第1季	86. 01. 22-23 86. 03. 12-13	0.50	0.70	6.4	17.7 5.5	20.3	37. 0 32. 0	43.0 36.0	2, 59 2, 66	3.11	0.60	0. 65	71 151	46 81	5, 57 3, 17
	86年第2季	86. 06. 26-27	0.70	0.90	7.0	8.0	20.0	22.0	28.0	2. 62	3.40	0.59	0. 69	78	15	2. 17
	86年第3季	86, 09, 21-22	1.00	1.10	10.0	15.0	17.0	48.0	55.0	2. 44	2.89	0.90	1. 16	126	49	7. 41
	86年第4季	86. 12. 28-29	0.50	0.90	10.0	14.0	21.0	22.0	27.0	2. 47	2.72	1.00	1. 14	139	54	10.50
	87年第1季 87年第2季	87. 03. 25-26	1.10	1.40	5.0 18.0	6.0 35.0	29.0	46.0	49.0	3, 52	3.63	1.13	1. 20	126	67	18.70
	87年第3季	87. 06. 24~25 87. 09. 15~16	1.30	1.90	11.0	22.0	35.0 27.0	17.0 39.0	42.0 49.0	3. 92 4. 73	4.46 5.78	1.37	1. 77 2. 09	74 162	55 47	14.60
	87年第4季	87. 12. 18-19	1.10	1.40	16.0	26.0	23.0	27.0	31.0	3, 70	4.51	1.43	1. 92	135	94	8, 88
	88年第1季	88. 03. 23-24	0.50	0.70	6.0	8.0	20.0	32.0	42.0	2. 77	3.23	0.91	1. 09	89	34	6. 70
	88年第2季	88. 06. 22-23	0.70	0.90	8.0	10.0	18.0	32.0	43.0	2. 89	3.51	1.05	1. 32	75	42	2. 86
	88年第3季 88年第4季	88. 09. 14~15 88. 12. 14~15	0.60	0.80	17.0 10.0	23.0 13.0	26.0 16.0	41.0 7.0	49.0 12.0	3. 09 1. 57	3.95 2.29	0.79 0.66	1. 29	131 161	55 123	2. 27 13. 90
	89年第1李	89. 03. 14~15	0.80	0.80	12.0	15.0	23.0	21.0	26.0	2. 15	2.56	0.37	0. 80	138	80	20.00
	89年第2季	89. 06. 20~21	0.60	0.80	9.0	12.0	14.0	26.0	33.0	2. 47	3.18	0.75	0. 98	162	68	2. 90
	89年第3季	89. 09. 19-20	0.60	0.80	6.0	11.0	13.0	24.0	28.0	3. 13	3.88	0.92	1. 12	130	88	3, 39
	89年第4季	89. 12. 19-20	0.60	0.80	9.0	13.0	15.0	16.0	18.0	2. 59	3.34	0.68	0. 97	96	45	1. 18
	90年第1季	90. 03. 20-21 90. 06. 12-13	0.80	0.90	12.0 8.0	18.0 12.0	19.0 21.0	20.0 26.0	25.0 29.0	2. 99 2. 62	3.57 3.06	0.84	1. 09 0. 76	161 130	60 63	3, 90 3, 50
	90年第3季	90. 09. 11~12	0.66	0.80	14.0	19.0	9. 0	39.0	47.0	2. 54	3.09	0.70	0. 79	111	39	2. 69
	90年第4季	90. 12. 11~12	0.60	0.70	12.0	16.0	16.0	28.0	37.0	3, 51	4.01	1.23	1. 49	123	48	3, 46
	91年第1季	91, 03, 12~13	0.90	1.10	15.0	26.0	30.0	30.0	45.0	3, 55	4.68	1.12	1, 73	144	55	3, 26
	91年第2季	91, 06, 11~12	0.60	0.70	11. 0	14.0	13.0 18.0	25.0 26.0	34. 0	2. 37 2. 15	2.56	0.71	0.77	129 77	52 32	3. 62 3. 44
	91年第3季 91年第4季	91. 09. 10~11 91. 12. 09~10	0.60	0.70	9, 0	11.0 12.0	15.0	30.0	35. 0 35. 0	2, 15	3.01	0.70	0.77 1.07	143	50	2, 88
	92年第1季	92. 03. 10~11	0.70	0.90	6. 0	9.0	25.0	21.0	28. 0	2. 81	3.28	0.58	0.88	115	50	2. 22
	92年第2季	92. 06. 09~10	0.80	0.90	6, 0	8.0	26.0	22.0	24. 0	3, 67	4.56	0.82	0.97	95	33	0. 91
	92年第3季	92. 09. 03~04	0.80	0.90	8, 0	11.0	25.0	32.0	34. 0	3. 91	4.36	0.85	0.97	73	35	2, 32
	92年第4季	92. 12. 07~08	0.80	0.90	9. 0	13.0	21.0	28.0	32. 0	2. 48	2.69	0.67	0.88	177	55	4. 30
	93年第1季 93年第2季	93. 03. 08~09 93. 06. 21~22	0.80	0.90 1.00	10. 0 7. 0	15.0 10.0	20.0 24.0	31.0 31.0	35. 0 36. 0	2. 51 4. 06	2.63 4.83	0.71 1.03	0.80 1.36	116 60	39 33	2, 90 1, 41
	93年第3季	93. 09. 14~15	0.60	0.80	7. 0	9.0	18.0	45.0	55. 0	2. 01	2.36	1.50	1.74	88	30	1. 58
鎮安	93年第4季	93, 12, 12~13	0.90	1.00	7. 0	10.0	22.0	27.0	33. 0	2. 88	3.64	0.69	0.98	155	38	1. 86
府	94年第1季	94. 03. 21~22	0.90	1.10	7. 0	9.0	26.0	30.0	34. 0	2, 70	3.49	0.81	1.12	133	85	1. 40
	94年第2季 94年第3季	94. 06. 20~21 94. 09. 23~24	1.00 0.70	1.40	8. 0	13.0 11.0	26.0 25.0	57.0 44.0	63. 0 53. 0	2, 81	3.78 3.81	0.72	0.99	62 103	30 43	1, 08 5, 66
	94年第4季	94. 12. 23-24	1.10	1.30	9. 0	18.0	35.0	42.0	47. 0	3. 17	3.64	1.12	1.39	240	81	3, 51
	95年第1季	95, 03, 20~21	1.00	1.20	8. 0	13.0	30.0	43.0	46. 0	2, 65	2.95	0.71	0.84	151	72	8, 76
	95年第2季	95. 06. 12~13	0.40	0.30	7. 0	9.0	23.0	29.0	34. 0	2. 93	3.34	0.89	1.02	156	48	5, 61
	95年第3季	95, 08, 21~22	0.80	0.90	7. 0	9.0	27.0	44.0	50. 0	3, 13	3.62	0.94	1.17	131	41	2. 30
	95年第4季 96年第1季	95. 12. 05~08 96. 03. 13~14	0.80	0.80	7. 0 6. 0	9.0 7.0	29.0 24.0	37.0 27.0	44. 0 46. 0	2. 69 2. 55	2.99 3.10	0.64	0.79 0.67	102 166	37 42	2. 18 0. 41
	96年第2季	96, 05, 25-26	0.50	0.60	5. 0	7.0	23.0	40.0	58. 0	3, 27	3.54	0.92	1.07	85	39	1. 12
	96年第3季	96, 08, 27-28	0.50	1.00	5, 0	9.0	19.0	36.0	62. 0	2, 40	3.06	0.30	0.45	92	38	2, 96
	96年第4季	96. 11. 13-14	0.50	0.70	4. 0	6.0	20.0	34.0	61. 0	2. 94	3.52	0.19	0.41	134	57	1. 87
	97年第1季 97年第2季	97. 02. 24~25	0.60	0.90	3. 0 4. 0	5.0 5.0	28. 0 19. 0	34.0 36.0	40. 0 76. 0	2, 41	2.51 3.87	0.36	0.42	80 113	27 43	2, 56 0, 86
	97年第3季	97. 05. 17-18 97. 08. 23-24	0.52	0.32	3. 0	4.0	15.0	22.0	41. 0	2. 67	2.92	0.36	0.42	89	33	8, 23
	97年第4季	97. 12. 07~08	0.49	0.79	2. 0	3.0	22.0	23.0	42. 0	2. 40	2.97	0.30	0.38	135	56	0. 33
	98年第1季	98. 02. 04~05	0.68	0.98	2. 0	3.0	16.0	18.0	35. 0	2. 78	3.92	0.45	0.76	106	49	1. 44
	98年第2季	98. 06. 02-03	0.39	0.56	4.0	6.0	13.0	35.0	66. 0	2. 44	2.83	0.45	0.92	85	47	3, 45
	98年第3季 98年第4季	98, 09, 07-08 98, 11, 28-29	0.48	0.72	2. 0	5.0 3.0	32.0 17.0	25.0 46.0	46. 0 63. 0	2, 48	2.90	0.49	0.81	91 114	46 48	4. 14 8. 81
	99年第1季	99. 03. 02~03	0.46	0.71	2. 0	3.0	17.0	34.0	55. 0	2. 33	2.81	0.36	0.54	121	63	3, 68
	99年第2季	99, 05, 05~06	0.43	0.60	2. 0	2.0	15.0	43.0	66. 0	2. 44	3.19	0.43	0.56	63	27	2. 13
	99年第3季	99. 08. 14~15	0.40	0.60	2. 0	2.0	13.0	10.0	37. 0	2. 37	2.71	0.43	0.51	85	38	2. 13
	99年第4季	99. 10. 09-10 100. 03. 05-06	0.30	0.60	2. 0 4. 0	4.0 7.0	16.0 15.0	40.0 22.0	59. 0 37. 0	2, 55 2, 23	2.92	0.55 0.23	0.69	128 106	78 43	3, 35 2, 59
	100年第1季	100. 05. 05-06	0.50	0.60	2, 0	3.0	16.0	39.0	45. 0	2. 30	2.57	0.44	0.55	120	93 59	2, 59
	100年第3季	100. 08. 26-27	0.50	0.60	3, 0	4.0	13.0	34.0	45. 0	2. 36	2.63	0.41	0.51	152	60	3. 06
	100年第4季	100. 11. 13-14	0.30	0.50	3, 0	4.0	19.0	25.0	42. 0	2, 76	3.03	0.28	0.85	99	53	1. 80
	101年第1季	101. 02. 27-28	0.40	0.50	5, 0	6.0	15.0	18.0	22. 0	2. 16	2.28	0.17	0.21	87	47	3, 66
	101年第2季 101年第3季	101. 05. 11~12 101. 08. 15~16	0.85	1.30 0.40	2. 0	3.0 5.0	20.0 21.0	38.0 29.0	59. 0 41. 0	2. 46 2. 10	2.89	0.50	0.59	111 67	61 30	5. 94 4. 13
	101年第4季	101. 12. 04-05	0.61	0.80	4. 0	6.0	16.0	22.0	35. 0	2. 49	2.76	0.46	0.53	99	62	5. 47
	空氣	品質標準	9	35	100	250	250	60	120					250	125	
		為環境部 113 出空氣品質標準		30 日公告	F •											

^{1、}空氣品質標準為環境部 113 年 9 月 2、 "*" 表示超出空氣品質標準 3、 "?" 表示無測性或無效值 4、 "-" 表示該測站未設置該項監測儀器 5、"--"表示無空氣品質標準

表 3.1.1-1 歷年空氣品質監測結果綜合比較表(續 1)

102年第1季	102, 02, 14-15	0.72	0.90	4.0	6, 0	17.0	28.0	44. 0	2.34	2, 65	0.29	0, 38	132	77	5, 31
102年第2季	102, 05, 18-19	0.25	0.40	2.1	4. 0	8.0	15.8	32. 0	2, 21	2, 53	0.28	0.37	89	38	6, 25
102年第3季	102, 09, 10-11	0.48	0.60	4.0	6, 0	18.0	24. 2	41.0	2, 28	2, 39	0.28	0.32	107	63	1.38
102年第4季	102.11.10-11	0.48	0.60	2.0	4, 0	13.0	17.8	26. 0	2.11	2, 30	0.21	0.30	109	53	6. 11
103年第1季	103. 03. 09-10	0.38	0.70	4.2	9, 0	31.0	23.0	37. 0	2, 38	2, 58	0.43	0, 53	75	38	2, 75
103年第2季	103, 05, 23-24	0.35	0.60	3.8	7.0	20.0	31.2	51.0	2.14	2. 42	0.16	0, 29	82	45	2, 20
103年第3季	103, 08, 27-28	0.81	1.20	5.4	14.0	26.0	28.4	46. 0	2.18	2, 44	0.15	0, 26	87	36	4. 94
103年第4季	103, 11, 16-17	0.40	0.50	2.3	3, 0	10.0	31.6	40.0	2.12	2, 49	0.20	0, 33	181	62	4.30
104年第1季	104, 03, 20-21	0.98	1, 20	1.3	3, 0	25. 0	41.8	58. 0	1.97	2, 36	0.09	0, 42	160	77	2, 11
104年第2季	104, 06, 23-24	0.13	0, 23	1.8	2, 9	7.9	24.3	36, 6	1.78	2, 04	0, 21	0, 26	32	26	4, 19
104年第3季	104, 09, 21-22	0.27	0, 43	4.7	12.8	25.0	42.6	54. 5	2, 27	3. 07	0.31	0, 45	63	50	4, 57
104年第4季	104. 10. 21-22	0.35	0, 74	3.9	6, 9	21.9	30, 2	65, 1	2.07	2, 69	0, 20	0, 25	63	64	4, 56
105年第1季	105, 01, 25-26	0, 59	0, 70	4.2	5, 8	27. 2	43.6	48, 4	1.93	2, 01	0, 05	0, 07	106	61	0, 19
105年第2季	105. 04. 26-27	0, 34	0, 60	4.6	6, 2	14.6	56.1	67, 8	1, 89	2, 31	0.09	0, 33	57	35	4, 18
105年第3季	105, 08, 25-26	0.40	0, 60	3.0	3, 0	39.0	18.2	28. 0	2, 40	2, 88	0, 20	0, 48	89	44	3, 26
105年第4季	105, 10, 09-10	0, 28	0, 50	1.5	3, 0	20.0	23, 3	45, 0	2.17	2, 21	0, 27	0, 33	40	22	4, 56
106年第1季	106, 03, 02-03	0, 60	0.70	5.0	7. 0	16.0	63. 0	75. 0	2.41	2, 79	0.35	0, 50	202	99	4, 25
106年第1季		0.40	0, 70	13.0	13.0	12.0	24.6	34. 0	2. 41	2, 19	0.09	0, 30	61	28	2, 06
	106.06.07-08			27.0	27.0	42.0	34.0		1. 95	2. 16			64	23	1, 78
106年第3季	106, 07, 22-23	0.70 0.83	0.80		11.0	13.0	38.0	47. 0	2, 38	2. 16 3. 36	0.09	0, 19 0, 28	164	58	3, 74
	106. 10. 07-08			11.0				51. 0							
107年第1季	107. 03. 04-05	0.27	0.50	2.2	7. 0	17.3	24.3	40. 1	2.30	3. 30	0.28	0.58	64	37	1.64
107年第2季	107. 05. 26-27	0.17	0.20	1.3	1.5	8.2	30.2	34. 7	2.00	2. 40	0.08	0.14	27	17	2.11
107年第3季	107. 05. 26-27	0.26	0.37	2.1	2, 5	12.4	41.0	62. 2	2.00	2. 20	0.10	0. 15	39	28	2. 32
107年第4季	107. 10. 25-26	0.31	0.53	2.5	7.1	21.7	56.6	64. 5	2.40	3. 10	0.13	0. 26	72	46	3.07
108年第1季	108. 01. 26-27	0.38	0.41	2.3	3, 5	6.9	60.6*	66. 3	2.00	2. 00	0.10	0. 11	198	102	3. 07
108年第2季	108. 04. 29-30	0.48	0.58	2.2	3, 2	10.7	63. 6	70. 9	2. 20	3. 10	0.13	0, 28	80	42	3, 13
108年第3季	108, 07, 20-21	0.19	0. 23	1.1	1.3	6.9	31.2	35. 8	2. 20	2, 50	0.07	0.12	51	16	3, 12
108年第4季	108, 10, 25-26	0.28	0.36	1.3	1.7	11.8	54.0	66. 1	2.10	2. 70	0.10	0.16	162	73	5, 32
109年第1季	109. 01. 19-20	0.49	0.74	1.7	2. 9	23.6	45. 6	48. 7	2. 30	2. 60	0.22	0.31	85	49	0.00
109年第2季	109. 04. 25-26	0.15	0.18	1.4	1.6	7.0	61.7	69. 7	2.30	3. 40	0.06	0. 12	52	41	2. 13
109年第3季	109. 07. 20-21	0.18	0. 21	1.0	1.5	10.0	31.3	38. 7	2. 20	2. 70	0.10	0, 25	20	18	0.86
109年第4季	109. 10. 19-20	0.29	0.45	1.6	2. 0	4.5	68. 9	82. 0	2.00	2. 10	0.06	0.08	89	49	3, 89
110年第1季	110. 1. 18-19	0.60	0.72	2.3	6, 6	27. 2	46.8	34. 3	2, 30	2. 70	0.18	0.34	77	55	3, 66
110年第2季	110, 04, 19-20	0.27	0.38	2.8	3, 5	17.0	63, 3	74. 4	2.10	2. 60	0.05	0.09	80	59	4, 53
110年第3季	110. 07. 20-21	0.28	0.39	1.4	3, 7	12.9	42.1	52. 2	2.10	2, 50	0.08	0, 15	53	30	12, 20
110年第4季	110, 10, 25-26	0.43	0.58	2.9	4. 9	16.4	56.7	81. 9	2, 30	2. 70	0.15	0, 27	57	30	7, 34
111年第1季	111. 1. 24-25	0. 21	0.36	<0.43	<0.43	16.9	36, 3	38. 9	2.10	2, 20	0.05	0.08	33	22	44. 00
111年第2季	111. 04. 25-26	0.13	0.18	1.8	2. 1	8.2	22.6	29. 7	2.00	2, 50	0.09	0, 15	46	27	15, 50
111年第3季	111. 7. 16-17	0.13	0.16	1.1	1, 2	6.7	22.4	25. 5	2.00	2. 30	0.05	0.08	29	22	7. 24
111年第4章	111, 10, 26-27	0.57	0.64	0.6	1.1	14.0	48. 9	75. 7	2. 80	4. 00	0.20	0. 27	56	43	63, 60
112年第1季	112.01.10-11	0.32	0.38	2.2	2. 6	11.0	47.3	50. 7	2, 20	2. 30	0.09	0.13	61	46	52, 60
112年第2季	112, 05, 30-31	0.18	0. 24	1.4	1.6	6.5	22.6	27. 5	1.90	2. 00	<0.05	<0.05	198	68	15, 40
112年第3季	112, 07, 31- 08, 01	0.28	0.33	1.4	2, 1	9.4	43. 4	59. 4	2.40	3. 40	<0.05	0.12	45	24	6. 16
112年第4季	112. 12. 14-15	0.50	0.60	2,8	4. 4	17.7	47.2	49. 9	3, 22	4. 91	0.16	0. 24	57	54	54. 20
113年第1季	113, 03, 05-06	0.20	0.40	3.4	4. 0	9. 4	29.8	38. 6	2. 21	2. 49	0.10	0.13	38	32	22, 30
113年第2季	113. 06. 17-18	0.40	0.50	1.4	1.4	7.4	30. 4	37. 1	1.94	2. 46	0.05	0.13	42	36	6, 50
113年第3季	113, 09, 22-23	0.20	0.30	1.2	1.4	7.9	25.3	26. 3	2.14	2.77	0.05	0.10	33	20	8, 20
113年第4季	113, 12, 21-22	0.30	0.30	1.5	1.7	8.9	52.5	55, 9	2, 33	2. 39	0.08	0.09	445	159	22, 70
114年第1季	114. 03. 01-02	0.50	0.60	3.5	5, 7	8.9	50.8	54. 8	3, 49	7, 52	0.08	0.13	73	57	32, 10
114年第2季	114. 06. 01-02	0.10	0.30	1.1	2, 2	8.9	54.2	78. 3	2.01	2. 31	0.05	0.07	24	15	8, 60
114年第3季	114, 08, 23-24	0.20	0.30	1.0	8. 0	8.9	67.0	87. 0	2.57	3. 90	0.08	0, 15	37	29	5, 30
空氣品質	標準	9	31	-	65	100	60	100					-	75	
			-		-	-							-		

^{1、}空氣品質標準為環境部 113 年 9 月 30 日公告。 2、 "*" 表示超出空氣品質標準 3、 "?" 表示無測值或無效值 4、 "-" 表示該測站未設置該項監測儀器 5、"- - 表示無空氣品質標準

歷年空氣品質監測結果綜合比較表(續2) 表 3.1.1-1

		监测项目	一氧化碳		二氧化硫 (ppb)		二氧化氮 (ppb)	臭氧(ppb)		總碳氢化 合物		非甲烷碳氢 化合物		總懸浮微粒	PN ₁₀	落塵量
监测站	測定時間		(ppm) 最高8小時	小時平均值	日平均值	小時平均值	小時平均值	最高8小時	小時平均值	日平均值	小時平均值	日平均值	小時平均值	(ug/m²) 24小時值	(ug/m³) 日平均值	(ton/km²/月) 毎月値
	85年第4季	86. 01. 27~28	平均值 0.50	(最大值)	5.0	(最大值) 7.9	(最大值) 14.8	平均值 47.0	(最大值) 58.0	2. 40	(最大值) 2.79	_	(最大值) —	105	71	7. 67
	86年第1季	86. 03. 11~12	0,90	0.90	9.3	26.7	25.2	51.0	88.0	2, 54	2.89	0.48	0. 57	120	77	5. 03
	86年第2季	86, 06, 27~28	0.80	0.90	9.1	16.0	10.0	27.0	37.0	2. 07	3.12	0.29	0. 38	22	16	7. 05
	86年第3季	86, 09, 19~20	1.00	1.20	9.0	13.0	16.0	46.0	54.0	2. 37	2.81	1.46	1. 67	184	69	21.20
	86年第4季 87年第1季	86. 12. 27~28	0.60 1.20	0.70 1.30	9.0	11.0	22.0 26.0	24.0	29.0	2. 42 3. 58	2.72 3.77	0.91	1. 07	117	49 63	22.81 9.79
	87年第2季	87. 03. 24-25 87. 06. 25-26	0.70	1.20	4.0 13.0	5.0 18.0	19.0	41.0 13.0	45.0 25.0	4. 05	4.31	1.07	1. 16	75.1	57	9. 83
	87年第3季	87. 09. 17-18	0.90	1.10	6.0	8.0	25.0	41.0	59.0	4. 31	5.09	1.10	1, 39	161	101	4. 58
	87年第4季	87. 12. 22~23	0.90	1.10	10.0	16.0	19.0	17.0	27.0	3. 24	3.64	1.07	1. 20	62	24	19.10
	88年第1李	88, 03, 25~26	0.70	0.80	6.0	9.0	19.0	33.0	38.0	2, 54	2.94	0.78	0. 97	101	34	7. 06
	88年第2季	88, 06, 23-24	0.70	0.80	7.0	10.0	15.0	34.0	46.0	2. 91	3.47	0.98	1. 29	83	38	1. 36
	88年第3季 88年第4季	88. 09. 15~16 88. 12. 15~16	0.60	0.80	17.0 14.0	22.0 16.0	20.0 22.0	40.0 11.0	60.0 25.0	2, 92 1, 66	3.37 2.22	0.95 0.51	1. 28 0. 69	135 253 *	59 182 *	3, 56 10, 70
	89年第1季	89, 03, 15-16	0.60	0.70	14.0	19.0	18.0	16.0	27.0	1, 67	2.31	0.45	0. 73	135	45	16.40
	89年第2季	89. 06. 21-22	0.70	0.80	12.0	15.0	17.0	26.0	36.0	2. 38	3.16	0.72	0. 98	203	88	3, 36
	89年第3季	89, 09, 20~21	0.70	0.80	9.0	11.0	15.0	28.0	33.0	3, 40	2.99	0.84	1. 09	106	41	3, 97
	89年第4季	89, 12, 20~21	0.60	0.70	8.0	13.0	15.0	12.0	15.0	2. 86	3,56	0.90	1, 15	112	56	3, 20
	90年第1季	90. 03. 21~22	0.70	0.80	11.0	17.0	17.0	17.0	19.0	3. 12	3.56	0.99	1, 21	105	50	3, 70
	90年第2季 90年第3季	90. 06. 13~14	0.75	0.80	10.0 16.0	14.0 19.0	18.0 18.0	25. 0 39. 0	27.0 43.0	3, 34	4.21 3.68	1.01	1. 33 1. 46	90 116	40 32	5. 00 5. 29
	90年第4季	90. 12. 12~13	0.70	0.90	15.0	24.0	30.0	22.0	29.0	3. 07	4.08	1.04	1. 72	132	76	2, 71
	91年第1季	91. 03. 13~14	0.70	0.80	13.0	24.0	21.0	25.0	35.0	3. 47	4.36	1.14	1. 57	104	48	3, 75
	91年第2季	91. 06. 13~14	0.50	0.60	5, 0	6.0	15.0	23.0	34. 0	1. 30	1.64	0.47	0.76	101	48	2. 57
	91年第3季	91. 09. 11~12	0.50	0.60	5, 0	6.0	14.0	27.0	33. 0	1. 21	1.26	0.44	0.57	79	43	1. 29
	91年第4季 92年第1季	91. 12. 10~11	0.60	0.60	7. 0 5. 0	8.0 7.0	11.0 17.0	28.0 26.0	20. 0 34. 0	1. 91 2. 92	2.42 3.17	0.57	0.88	83 83	45 38	2. 75 2. 87
	92年第2季	92. 03. 11~12 92. 06. 10~11	0.60	0.80	5. 0	7.0	24.0	16.0	23. 0	3, 48	4.62	0.83	1.25	77	35	0, 86
	92年第3季	92. 09. 04~05	0.70	0.90	8. 0	11.0	23.0	30.0	36, 0	3, 86	4.28	0.82	0.99	70	31	2. 75
	92年第4季	92. 12. 08~09	0.60	0.60	7. 0	8.0	10.0	25.0	30. 0	2. 12	2.69	0.50	0.85	84	36	4. 63
*	93年第1季	93, 03, 09~10	0.60	0.70	7. 0	11.0	11.0	29.0	36. 0	2. 30	2.56	0.55	0.71	152	64	2. 39
*	93年第2季	93, 06, 22~23	0.90	1.00	7. 0	9.0	32.0	25.0	34. 0	4. 19	5.06	1.08	1.49	74	34	1. 58
液港	93年第3季 93年第4季	93. 09. 15~16 93. 12. 13~14	0.50	0.70	8. 0 7. 0	10.0 9.0	17.0 20.0	26.0 24.0	34. 0 34. 0	1. 69 2. 51	1.91 3.41	1.31 0.64	1.60 0.86	79 171	35 38	1. 32 1. 67
椎	94年第1季	94. 03. 22~23	0.80	0.90	7. 0	9.0	24.0	30.0	36. 0	2. 49	3.14	0.72	0.93	134	75	1. 43
在所	94年第2季	94. 06. 21~22	0.70	0.90	6, 0	9.0	20.0	48.0	65. 0	2. 46	2.90	0.59	0.80	78	35	1. 78
	94年第3季	94, 09, 24~25	0.70	0.90	6. 0	8.0	22.0	34.0	41. 0	2. 69	3.05	0.78	0.98	71	31	7. 45
	94年第4季	94. 12. 22~23	0.90	1.20	8. 0	12.0	23.0	37.0	46, 0	3, 04	3,76	1.15	1, 95	134	51	3, 59
	95年第1季 95年第2季	95. 03. 21~22 95. 06. 13~14	0.70	1.00	8. 0 8. 0	12.0 10.0	25.0 26.0	37.0 32.0	44. 0 41. 0	3, 03 2, 96	3.88	1.16 0.87	1.89	113 128	42 39	7, 77
	95年第3季	95. 08. 22~23	0.80	0.90	7. 0	9.0	30.0	44.0	51. 0	3, 19	3.93	0.97	1.27	141	44	2, 42
	95年第4季	95, 12, 05~06	0.50	0.50	5. 0	7.0	25.0	31.0	38. 0	2. 41	2.86	0.56	0.67	80	25	3, 28
	96年第1季	96, 03, 14~15	0.70	1.00	5, 0	7.0	30.0	29.0	48. 0	2. 46	3.65	0.34	0.49	146	42	0. 64
	96年第2季	96, 05, 25-26	0.70	0.90	6. 0	7.0	26.0	38.0	55. 0	2. 80	3.16	0.68	0.82	86	37	1. 38
	96年第3季 96年第4季	96, 08, 26-27 96, 11, 14-15	0.40	0.60	6. 0 5. 0	10.0 7.0	19.0 29.0	52.0 37.0	74. 0 72. 0	2, 38	2.99 3.92	0.28	0.55	106 124	46 55	5. 47 0. 302
	97年第1季	95. 11. 14~15	0.40	0.60	4. 0	5.0	22.0	43.0	51. 0	2. 44	2.75	0.38	0.46	107	45	3, 820
	97年第2季	97. 05. 16~17	0.70	0.91	4. 0	5.0	24.0	41.0	76. 0	2. 70	3.59	0.30	0.69	119	49	0. 613
	97年第3季	97. 08. 22~23	0.34	0.49	3. 0	4.0	19.0	30.0	59. 0	2. 71	3.13	0.40	0.57	79	28	12.7
	97年第4季	97. 12. 08~09	0.47	0.59	2. 0	3.0	16.0	29.0	45. 0	2. 14	2.52	0.18	0.48	102	40	0. 24
	98年第1季 98年第2季	98. 02. 05~06 98. 06. 03~04	0.64	0.81	3. 0 3. 0	4.0 5.0	14.0 12.0	27.0 23.0	38. 0 60. 0	2. 23 2. 27	2.34	0.23	0.37	116 79	46 38	1. 73 3. 33
	98年第3季	98. 09. 08-09	0.50	0.99	2. 0	4.0	24.0	29.0	53. 0	2. 63	3.03	0.43	0.67	133	53	2. 63
	98年第4季	98. 11. 27~28	0.27	0.37	1. 0	2.0	16.0	43.0	58. 0	2. 08	2.18	0.21	0.29	116	56	11.10
	99年第1季	99. 03. 02~03	0.68	0.87	5, 0	9.0	18.0	38.0	66. 0	2. 70	3.23	0.48	0.65	124	61	4. 99
	99年第2季	99. 05. 05~06	0.50	0.70	5. 0	6.0	17.0	35.0	60. 0	2. 27	2.42	0.34	0.40	86	45	2. 07
	99年第3季 99年第4季	99, 08, 11~12 99, 10, 08~09	0.30	0.30	2. 0 5. 0	3.0 9.0	15.0 17.0	18.0 43.0	50. 0 61. 0	2. 29 2. 61	2.53 3.13	0.38	0.48	73 98	30 50	1. 47 3. 12
	100年第1季	100. 03. 06-07	0.80	1.10	7. 0	14.0	19.0	25.0	44. 0	2. 20	2.51	0.21	0.00	81	35	3. 63
	100年第2季	100. 05. 09~10	0.60	0.90	3, 0	5.0	36.0	20.0	45. 0	2. 58	3.07	0.48	0.63	126	67	2. 52
	100年第3季	100.08.2728	0.60	0.70	5, 0	7.0	21.0	29.0	47. 0	2. 46	2.66	0.42	0.47	108	51	3, 17
	100年第4季	100. 11. 14-15	0.50	0.60	5, 0	7.0	18.0	36.0	76. 0	2. 62	2.83	0.23	0.28	101	58	1. 91
	101年第1季	101. 02. 26~27 101. 05. 12~13	0.40	0.40	4.0	4.0 5.0	10.0 20.0	16.0 34.0	17. 0 52. 0	2. 10	2.15 2.57	0.03	0.09	94 106	46 54	4. 05 6. 15
	101年第3季	101. 08. 14~15	0.35	0.70	6, 0	9.0	29.0	28.0	47. 0	1. 99	2.10	0.17	0.22	64	30	3. 47
101年第4年 101.12.05-06 0.40 0.60 5.0 6.0 18.0 28.0 36.0 2.48 2.59 0.47 0.49 101 52 5.28													5. 28			
	空氣品質		9	35	100	250	250	60	120					250	125	
		為環境部 113		30 日公告												

^{1、}空氣品質標準為環境部 113 年 9 月 2、 "*" 表示超出空氣品質標準 3、 "?" 表示無測性或無效值 4、 "-" 表示該測站未設置該項監測儀器 5、"--"表示無空氣品質標準

表 3.1.1-1 歷年空氣品質監測結果綜合比較表(續 3)

1908-REF 1006,011-16 0.39 0.59 2.6 0.30 12.0 0.50 0.50 44.0 2.10 2.27 0.34 0.33 62 0.7 5.15 1908-REF 1006,011-12 0.40 0.69 6.7 6.8 16.0 0.04 4.1.0 2.13 2.28 0.20 0.22 0.28 1.05 1908-REF 1006,011-12 0.40 0.69 6.7 6.8 16.0 0.04 4.1.0 2.13 2.28 0.20 0.20 0.27 107 107 0.5 1908-REF 1006,010-11 0.40 0.59 6.0 10.0 0.40 0.25 6.7 0.20 0.20 0.40 10.0 0.20 0.41 10.0 10.			100		_ /1	_ , _	- 110 11			. , ,		120 00	(.)	,		
	102年第1季	102, 02, 15-16	0.39	0.50	2.0	3, 0	12.0	35.0	57.0	2.10	2.27	0.24	0.33	82	47	5. 15
100-816 102, 11, 11-12 0.50 0.60 0.60 0.60 1.0 0.00 1.0 0.10 0.85 0.85 0.47 0.277 2.075 0.89 0.44 1.150 72 77 77 77 78 100-816 100, 100-10 1.0 0.80 0.80 0.40 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00	102年第2季	102. 05. 17-18	0.33	0.50	2.0	3. 0	10.0	25.0	44. 0	2. 10	2, 23	0. 22	0. 28	115	53	5. 97
	102年第3章	102. 09. 11-12	0.43	0.60	4.2	6. 0	16. 0	30.4	41.0	2. 13	2.28	0.23	0. 27	107	63	1.38
	102年第4季	102. 11. 11-12	0.50	0.60	2.0	3. 0	13. 0	23.8	33.0	2, 29	2.66	0, 28	0.41	108	39	6. 18
	103年第1季	103, 03, 10-11	0.46	0.50	8.0	18.0	49. 0	29.5	47.0	2. 37	2.58	0.39	0.47	135	73	2.77
	103年第2章	103, 05, 24-25	0, 28	0.40	2.8	5, 0	13. 0	32.4	60.0	2. 36	3, 59	0.16	0.38	79	41	3, 40
	103年第3季	103, 08, 26-27	0.74	1. 20	6.8	21.0	29. 0	29.7	54.0	2. 25	3, 23	0.14	0.34	83	35	4. 79
	103年第4季	103, 11, 18-19	0.44	0.60	2.6	3. 0	13. 0	31.1	63.0	2, 53	2.71	0.34	0.41	170	55	4. 29
	104年第1章	104. 03. 21-22	0.87	1.00	1.9	3. 0	9. 0	17.2	35.0	1. 91	1.99	0.05	0.07	120	51	2. 88
	104年第2季	104. 06. 22-23	0, 20	0. 29	2.3	5, 5	11. 2	24.1	55, 7	2.14	2.56	0, 23	0.30	34	31	4. 20
155-#219 155. 61, 27-29 0.66 0.80 7.5 18.0 21.4 33.0 48.4 1.97 2.29 0.10 0.26 60 43 0.27 155-#219 155. 61, 27-21 0.66 0.80 18.7 18.4 18.3 42.2 47.9 2.22 3.64 0.12 0.25 63 43 3.30 155-#249 155. 61, 27-21 0.27 0.40 2.6 5.0 18.0 18.7 31.0 2.18 2.29 0.44 0.80 67 29 3.14 155-#249 155. 61, 27-21 0.27 0.40 2.6 5.0 18.0 18.7 43.0 2.12 2.19 0.27 0.40 44 17 4.70 156-#249 156. 61, 27-22 0.70 0.70 0.80 2.6 4.0 18.6 18.7 6.15 6.50 8.10 2.20 2.63 0.30 0.40 44 17 4.70 156-#249 156. 61, 27-22 0.70 0.70 0.80 2.6 4.0 18.6 18.7 6.50 8.10 2.20 2.63 0.30 0.40 6.50 4.0 18.6 18.5 156-#249 156. 61, 27-22 0.50	104年第3季	104. 09. 23-24	0.25	0. 36	2.6	3, 3	14. 7	37.6	54.8	2. 12	2.64	0. 20	0. 32		42	4. 55
155-#279 155.64,24-25 0.66 0.89 16.7 15.4 16.3 42.2 47.8 2.22 3.04 0.12 0.23 65 43 3.39 1155-#289 105.06,25-27 0.34 0.49 2.6 5.6 16.0 31.7 31.0 2.18 2.50 0.44 0.65 67 23 3.14 105-#289 105.06,25-12 0.30 4.1 17 4.79 105-#289 105.06,25-12 0.30 4.1 17 4.79 105-#289 105.06,05-12 0.30 0.30 0.0 0	104年第4季	104, 10, 24-25	0.26	0. 33	2.8	4.7	13. 5	34.7	59.0	2.04	2.23	0. 21	0. 23	46	63	4. 45
105+#39 105.08.26-27 0.34 0.40 2.0 0.46 44.0 14.7 31.0 2.18 2.50 0.44 0.68 67 59 3.14 105-#474 105.10.10-11 0.27 0.49 2.0 0.50 10.0 31.7 43.0 2.12 2.19 0.27 0.30 41 17 4.70 106-#474 106.00-102 0.00 0.30 0.00 0.00 10.0 11.0 05.0 81.0 2.30 2.63 0.30 0.40 30 49 441 106-#474 106.00-102 0.00 0.50 0.30 3.0 10.0 11.0 0.50 0.00 2.04 2.70 0.07 0.11 0.11 0.18 73 33 2.01 106-#474 106.10.00-07 0.60 0.50 0.30 3.0 11.0 10.0 37.0 71.0 2.29 3.14 0.10 0.17 1422 00 3.23 107-#474 107.00.05-60 0.28 0.29 1.8 5.8 8.1 8.29 58.1 2.30 2.40 0.33 0.40 65 41 1.87 107-#474 107.00.55-60 0.28 0.29 1.8 5.8 8.1 8.29 58.1 2.30 2.40 0.33 0.40 65 41 1.87 107-#474 107.00.55-60 0.28 0.29 1.8 2.2 1.5 5.34 44.0 1.90 2.10 0.00 0.16 40 29 2.42 107-#474 107.00.55-60 0.18 0.13 1.4 3.1 2.1 3.1 2.1 3.1 4.0 4.0 2.2 2.0 0.50 0.50 0.30 0.22 2.3 2.1 108-#474 107.10.55-60 0.18 0.13 1.4 3.1 2.1 3.1 2.1 3.4 4.5 3.4 2.00 2.50 0.00 0.22 3.2 2.1 2.5 108-#474 107.10.55-60 0.18 0.13 1.4 3.1 2.1 3.1 2.1 3.8 4.6 57.8 1.80 1.80 2.10 0.00 0.16 40 29 2.42 108-#474 108.10.25-20 0.25 0.30 2.7 3.0 0.4 40.2 50.2 2.00 2.50 0.00 0.15 40 40 29 2.42 108-#474 108.10.25-20 0.25 0.30 0.77 1.5 0.00 0.4 40.2 50.2 2.00 0.50 0.00 0.13 40 40 2.5 0.30 3.15 108-#474 108.10.25-20 0.25 0.30 0.77 1.5 0.00 0.4 40.2 50.2 2.00 0.50 0.00 0.13 40 40 2.5 0.30 3.15 108-#474 108.10.25-20 0.25 0.30 0.72 1.5 0.00 0.5 0.00 0.10 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	105年第1季	105, 01, 27-28	0.66	0.80	7.5	18.9	21.4	33.0	40.4	1. 97	2, 20	0.10	0. 24	60	43	0. 27
105+#44 105,10,10-11	105年第2季	105, 04, 24-25	0.66	0.80	16.7	18.4	18. 3	42.2	47. 9	2. 22	3.04	0.12	0. 23	63	43	3. 90
106+#31# 106, 03, 01-02 0.20 0.30 0.30 0.00 1.0 11.0 17.0 05.0 81.0 2.35 2.63 0.20 0.40 53 49 4.41 106+#32# 106, 00, 00-07 0.77 0.80 0.50	105年第3章	105, 08, 26-27	0.34	0.40	2.0	4. 0	44. 0	14.7	31.0	2. 18	2, 50	0.44	0.68	67	29	3. 14
106+#29 106, 66, 66-77	105年第4季	105, 10, 10-11	0.27	0.40	2.6	5. 0	16. 0	31.7	43.0	2. 12	2.19	0. 27	0.30	41	17	4. 70
106+	106年第1季	106, 03, 01-02	0.30	0. 30	6.0	10.0	17. 0	65.0	81.0	2, 36	2.63	0.30	0.40	93	49	4. 41
106+	106年第2季	106. 06. 06-07	0.79	0.80	2.0	4. 0	14. 0	43.1	63.0	2.04	2.70	0.07	0.17	94	48	1. 95
107+	106年第3章	106, 07, 08-09	0.50	0.50	3.0	3. 0	9. 0	22.0	46.0	2. 29	3.14	0. 11	0.18	78	33	2. 01
107-#82# 107.05.27-28	106年第4季	106, 10, 06-07	0.60	0.60	9.0	11.0	10. 0	37.0	78, 0	2, 29	3, 34	0, 10	0.17	142	69	3, 23
107-#38		107, 03, 05-06	0, 28	0. 29				52.9	58.1							
107-#84# 107.10.25-26	107年第2季	107, 05, 27-28	0.16	0. 21	0.9	1.6	7. 9	25.4	33.4	2. 00	2.50	0.09	0. 32	28	21	2. 05
108-#1# 108.01.28-29 0.32 0.34 2.2 3.8 10.8 54.6 57.8 1.80 1.90 0.09 0.11 51 38 3.15 108-#2# 108.04.29-30 0.25 0.30 2.7 3.9 9.4 40.2 50.2 2.00 2.50 0.09 0.20 42 29 3.67 108-#3# 108.07.21-22 0.23 0.29 1.1 1.6 8.9 51.2 36.4 2.10 2.60 0.09 0.13 49 21 2.58 108-#3# 108.01.29-27 0.24 0.29 1.1 1.6 8.9 51.2 36.4 2.10 2.00 0.07 0.12 61 47 4.27 109-#3# 108.01.29-27 0.24 0.29 1.5 1.6 2.6 20.9 56.1 56.4 2.30 2.30 0.12 0.17 75 51 0.00 109-#3# 109.04.24-25 0.33 0.37 2.2 3.7 18.8 59.9 64.8 2.20 2.80 0.10 0.15 53 40 1.22 109-#3# 109.07.20-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.25 20 18 0.86 110-#3# 109.10.19-20 0.29 0.45 1.6 2.0 4.5 68.9 82.0 2.00 2.10 0.05 0.06 89 49 3.89 110-#3# 110.19-20 0.29 0.27 0.38 2.8 3.5 17.0 3.3 74.4 2.10 2.60 0.05 0.09 80 59 4.53 110-#3# 110.07.20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.06 0.05 3.3 2.2 44.00 111-#3# 111.1.24-25 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.09 0.15 53 30 12.20 111-#3# 111.1.24-25 0.21 0.36 0.43 0.43 1.9 16.4 58.7 81.9 2.50 2.50 0.09 0.15 46 27 22.20 111-#3# 111.1.24-25 0.21 0.36 0.43 0.43 1.9 16.4 58.7 81.9 2.50 2.50 0.09 0.15 46 27 22.20 111-#3# 111.1.10.25-26 0.61 0.73 0.6 1.9 16.4 58.7 81.9 2.50 2.50 0.09 0.15 46 27 22.20 112-#3# 111.06.19-90 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.50 2.50 0.09 0.15 46 27 22.20 112-#3# 111.06.25-26 0.61 0.73 0.6 0.73 0.6 0.73 0.6 0.75 0.6 0.75 0.6 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0	107年第3季		0.17	0. 22	1.6	2. 2	15. 5	34.1	45. 4	1. 90	2.10	0.09	0.16	40	29	2. 42
108-#22# 108.04.29-30 0.25 0.30 2.7 3.6 9.4 40.2 50.2 2.00 2.50 0.06 0.20 42 29 3.67 108-#3## 108.07.21-22 0.23 0.29 1.1 1.0 11.4 31.2 36.4 2.10 2.00 0.09 0.13 49 21 2.58 108-#4# 108.01.0.26-27 0.24 0.29 1.1 1.6 8.9 51.2 63.9 1.00 2.10 0.07 0.12 61 47 4.27 109-#3## 109.01.29-21 0.44 0.72 1.5 2.6 29.9 56.1 59.4 2.30 2.30 0.12 0.17 75 51 0.00 109-#3## 109.01.29-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.19 53 40 1.22 109-#3## 109.01.29-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.25 20 18 0.86 110-#3## 110.11-13-10 0.60 0.72 2.3 0.6 27.2 46.8 34.3 2.20 2.70 0.18 0.34 77 55 3.66 110-#3## 110.04.19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.00 0.05 0.09 80 59 4.53 110-#3## 110.07.29-21 0.40 0.58 2.9 4.0 16.4 56.7 81.9 2.20 2.70 0.15 0.77 57 30 12.20 111-#3## 111.11-24-25 0.21 0.36 0.43 0.43 16.9 36.3 38.9 2.10 2.20 2.70 0.15 0.27 57 30 7.34 111-#3## 111.11-17-18 0.12 0.36 0.43 0.43 16.9 36.3 38.9 2.10 2.20 2.50 0.06 0.8 33 22 44.00 111-#3## 111.11-12-25 0.61 0.73 0.8 1.0 16.4 53.5 78.1 2.70 2.30 2.00 0.15 0.27 57 30 7.34 111-#3## 111.11-12-25 0.61 0.73 0.8 1.0 16.4 53.5 78.1 2.70 2.30 2.50 0.06 0.15 46 27 22.20 112-#3## 111.06.90-90 0.38 0.43 0.43 1.5 1.5 1.5 2.7 2.8 2.20 2.20 2.00 0.05 0.08 33 22 44.00 112-#3## 111.10-12-20 0.05 0	107年第4季	107, 10, 25-26	0.18	0.13	1.4	3.1	21. 7	60.6	68, 7	2.00	2.40	0. 15	0, 25	70	51	3. 15
108+#3# 108,07,21-22 0.23 0.29 1.1 1.0 11.4 31.2 36.4 2.10 2.60 0.09 0.13 49 21 2.58 108+#4# 108,10,20-27 0.24 0.29 1.1 1.0 8.9 51.2 63.9 1.90 2.10 0.07 0.12 61 47 4.27 109+#1# 100,01,20-21 0.44 0.72 1.5 2.6 20.9 56.1 56.4 2.30 2.30 0.10 0.17 75 51 0.00 109+#2# 100,04,24-25 0.33 0.37 2.2 3.7 18.8 59.9 64.8 2.0 2.00 0.10 0.19 53 40 1.22 109+#3# 100,07,20-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.25 20 18 0.86 109+#4# 109,10,10-20 0.29 0.45 1.6 2.0 4.5 68.9 82.0 2.00 2.10 0.06 0.08 89 49 3.89 110+#1# 110,118-19 0.60 0.72 2.3 6.6 27.2 46.8 34.3 2.30 2.70 0.18 0.34 77 55 3.66 110+#3# 110,07,20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.06 0.05 0.09 80 59 4.53 110+#3# 110,10,25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111+#3# 111.1,12-18 0.12 0.16 1.1 1.3 5.6 22.5 27.0 2.00 2.20 0.06 0.10 26 23 24.00 111+#4# 111,12-15-26 0.13 0.18 1.8 2.1 8.2 22.6 22.7 2.00 2.20 0.06 0.10 26 23 24.00 111+#4# 111,12-15-36 0.16 0.73 0.8 1.9 16.4 53.5 78.1 2.70 2.30 0.15 0.27 57 30 7.34 112+#4# 111,10,10,80-90 0.28 0.30 0.43 2.8 4.8 17.0 16.4 53.5 78.1 2.70 2.30 0.06 0.10 26 23 24.00 111+#4# 111,10,10,80-90 0.28 0.40 2.5 1.6 2.5 7.0 48.2 2.5 2.70 2.00 2.50 0.06 0.10 26 23 24.00 112+#4# 111,10,10,80-90 0.28 0.30 1.4 1.5 7.2 24.1 34.2 1.8 2.10 3.00 0.15 3.5 3.8	108年第1季	108, 01, 28-29	0.32	0.34	2.2	3, 8	10.8	54.6	57.8	1. 80	1.90	0.09	0.11	51	38	3. 15
108年本年 108,10,20-27 0,24 0,29 1,1 1,6 8,9 51,2 63,9 1,90 2,10 0,07 0,12 61 47 4,27 109年末年 109,01,20-21 0,44 0,72 1,5 2,6 20,9 56,1 59,4 2,30 2,30 0,12 0,17 75 51 0,00 109年末年 109,04,2-25 0,33 0,37 2,2 3,7 18,8 59,9 64,8 2,20 2,80 0,10 0,19 53 40 1,22 109年末年 109,01,20-21 0,18 0,21 1,0 1,5 10,0 31,3 38,7 2,20 2,70 0,10 0,25 20 18 0,86 109年末年 109,10,19-20 0,29 0,45 1,6 2,0 4,5 68,9 82,0 2,00 2,10 0,66 0,08 89 49 2,89 110年末年 110,1,18-19 0,60 0,72 2,3 0,0 27,2 46,8 34,3 2,30 2,70 0,18 0,34 77 55 3,66 110年末年 110,07,20-21 0,28 0,39 1,4 3,7 12,9 42,1 52,2 2,10 2,60 0,05 0,09 80 59 4,53 110年末年 110,10,72-20 0,29 0,45 0,43 0,58 2,9 4,9 16,4 56,7 81,9 2,30 2,70 0,15 0,27 57 30 1,20 111年末日 111,12-25 0,21 0,36 0,43 0,43 0,43 16,9 36,3 38,9 2,10 2,20 0,05 0,08 33 22 44,00 111年末日 111,10,25-26 0,13 0,18 1,8 2,1 8,2 22,6 29,7 2,00 2,50 0,09 0,15 46 27 22,20 111年末日 111,10,25-26 0,61 0,73 0,8 1,9 16,4 55,5 78,1 2,70 2,00 2,50 0,09 0,15 46 27 22,20 111年末日 112,01,08-99 0,38 0,43 2,9 4,1 11,3 6,6 2,5 77,0 48,2 61,9 2,00 2,50 0,06 0,10 25 53 43 38,40 112年末日 112,01,08-99 0,38 0,43 2,9 4,1 11,3 6,6 2,5 77,0 48,2 61,9 2,00 2,50 0,06 0,15 58 44,00 112年末日 112,01,08-99 0,38 0,43 2,9 4,1 11,3 6,6 2,5 78,1 2,70 3,30 0,19 0,25 53 44,5 3,84 112年末日 112,01,08-99 0,38 0,43 2,9 4,1 11,3 6,6 2,5 77,0 48,2 61,9 2,00 2,50 0,06 0,15 53 43 38,40 112年末日 112,01,08-99 0,38 0,43 2,9 4,1 11,3 6,6 2,5 77,0 48,2 61,9 2,00 2,50 0,05 0,06 0,15 53 43 38,40 112年末日 112,01,08-99 0,38 0,43	108年第2季	108, 04, 29-30	0, 25	0.30	2.7	3, 9	9. 4	40.2	50, 2	2. 00	2, 50	0.09	0, 20	42	29	3, 67
109年末1季 109.01.20-21 0.44 0.72 1.5 2.6 20.9 56.1 59.4 2.30 2.30 0.12 0.17 75 51 0.00 109年末2季 109.04.24-25 0.33 0.37 2.2 3.7 18.8 59.9 64.8 2.20 2.80 0.10 0.19 53 49 1.22 109年末3季 109.07.20-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.25 20 18 0.86 1109年末4季 110.11.81-19 0.60 0.72 2.3 6.6 27.2 46.8 34.3 2.30 2.70 0.18 0.34 77 55 3.66 110年末3季 110.04.19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.60 0.05 0.09 80 59 4.53 110年末3季 110.10.25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111年末3季 111.17-18 0.12 0.16 1.1 1.3 5.6 22.5 27.0 2.00 2.20 2.20 0.06 0.15 53 33 22 44.00 111年末3季 111.10.25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 2.20 0.05 0.09 0.15 53 33 40 1.24 111年末3季 111.10.25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 2.20 0.05 0.09 0.15 33 33 22 44.00 111年末3季 111.10.25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 2.20 0.05 0.05 0.10 26 23 24.00 111年末3季 112.05.29-30 0.32 0.43 0.58 2.9 4.1 11.3 5.6 22.5 27.0 2.00 2.20 0.05 0.10 0.25 53 43 33.40 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 6.63 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 6.63 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 6.63 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 6.63 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 6.63 112年末3季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 51.9 46.6 2.	108年第3季	108, 07, 21-22	0.23	0. 29	1.1	1. 9	11.4	31.2	36.4	2. 10	2.60	0.09	0.13	49	21	2, 58
109年来2章 109.04.24-25 0.33 0.37 2.2 3.7 18.8 59.9 64.8 2.20 2.80 0.10 0.19 53 40 1.22 109年来4章 109.10,19-20 0.29 0.45 1.6 2.0 4.5 68.9 82.0 2.00 2.10 0.06 0.08 89 49 3.89 110年末1章 110,1.18-19 0.60 0.72 2.3 6.6 27.2 46.8 34.3 2.30 2.70 0.18 0.34 77 55 3.66 110年末2章 110,04.19-20 0.27 0.38 2.8 3.5 17.0 68.3 17.4 4.2 10 2.00 0.05 0.09 80 59 4.53 110年末3章 110.07.20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110年末3章 111.12-25 0.21 0.36 40.43 40.43 16.9 36.3 38.9 2.10 2.20 0.05 0.09 33 22 44.00 111年末3章 111.12-25 0.21 0.36 40.43 40.45 16.9 36.3 38.9 2.10 2.20 0.05 0.09 0.15 46 27 22.20 111年末3章 111.7,17-18 0.12 0.16 1.1 1.3 5.6 22.5 27.7 2.00 2.20 0.06 0.10 28 23 24.00 111年末3章 112.01.85-26 0.43 0.28 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112年末2章 112.05.29-30 0.21 0.55 1.6 2.5 7.0 48.2 61.9 2.00 2.50 4.05 0.15 69 63 8.63 112年末3章 112.01.80-90 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112年末2章 112.01.80-90 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112年末2章 112.02.29-30 0.21 0.55 1.6 2.5 7.0 48.2 61.9 2.00 2.55 4.0 0.11 0.16 82 75 20.60 112年末2章 113.05.29-30 0.21 0.55 1.6 2.5 7.0 48.2 61.9 2.00 2.50 4.0 5.10 4.5 5.3 2.1 4.5	108年第4季	108, 10, 26-27	0.24	0. 29	1.1	1.6	8. 9	51.2	63. 9	1. 90	2.10	0.07	0.12	61	47	4. 27
109年東3章 109,07,20-21 0.18 0.21 1.0 1.5 10.0 31.3 38.7 2.20 2.70 0.10 0.25 20 18 0.88 109年東4章 109,10,19-20 0.29 0.45 1.0 2.0 4.5 68.9 82.0 2.00 2.10 0.06 0.08 89 49 3.89 110年東2章 110,04,19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.60 0.05 0.09 80 59 4.53 110年東2章 110,07,20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110年東2章 111,124-25 0.21 0.36 0.43 0.43 0.43 16.9 36.3 38.9 2.10 2.20 0.05 0.09 0.15 57 30 7.34 111年東2章 111.1,24-25 0.21 0.36 0.43 0.43 0.43 16.9 36.3 38.9 2.10 2.20 0.05 0.09 0.15 46 27 22.20 111年東4章 111.1,25-26 0.13 0.18 1.8 2.1 8.2 22.6 29.7 2.00 2.50 0.09 0.15 46 27 22.20 111年東4章 111.1,25-26 0.61 0.73 0.8 1.9 16.4 55.5 78.1 2.70 3.30 0.19 0.25 53 43 38.40 112年東4章 112.01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 112年東2章 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.10 2.50 32 11 0.00 112年東2章 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.07 0.15 0.25 53 43 38.40 112年東3章 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.11 0.16 82 75 26.60 112年東3章 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.12 69 63 8.63 112年東3章 113.05.05-00 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 0.026 0.08 38 30 11.40 113年東3章 113.05.05-00 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 0.026 0.08 38 30 11.40 113年東3章 113.05.05-00 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 0.026 0.08 38 30 11.40 113年東3章 114.05.03-04 0.20 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.25 2.41 0.07 0.16 45 32 17.	109年第1季	109. 01. 20-21	0.44	0.72	1.5	2.6	20. 9	56.1	59.4	2, 30	2.30	0.12	0.17	75	51	0.00
109年第4年 109, 10, 19-20 0.29 0.45 1.6 2.0 4.5 68.9 82.0 2.00 2.10 0.06 0.08 89 49 3.89 110+第1章 110, 1, 18-19 0.60 0.72 2.3 6.6 27.2 46.8 34.3 2.30 2.70 0.18 0.34 77 55 3.66 110+第2章 110, 04, 19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.60 0.05 0.09 80 59 4.53 110+第3季 110, 07, 20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110+第4季 111, 10.25-26 0.43 0.58 2.0 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111+第1章 111, 12.455 0.21 0.36 <0.43 0.43 16.9 36.3 38.9 2.10 2.20 0.05 0.08 33 22 44.00 111+第2季 111, 04.25-26 0.13 0.18 1.8 2.1 8.2 22.6 29.7 2.00 2.50 0.09 0.15 46 27 22.20 111+第4章 111, 10.25-26 0.61 0.73 0.8 1.9 16.4 55.5 78.1 2.70 3.30 0.19 0.25 53 43 33.40 112+第1季 112.01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112+第4季 112.02.52-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.09 0.15 46 27 22.20 112+第4季 112.03.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112+第4季 112.03.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 20.60 112+第4季 112.03.08-09 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 112+\$\$ 112.03.08-09 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.07 2.50 32 11 0.00 112+\$\$ 113.00.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113+\$\$ 113.00.38-09 0.15 44.5 59 30.30 113+\$\$ 113.00.38-09 0.20 0.20 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.08 0.23 88 72 29.40 114+\$\$ 114.08.08-04 0.20 0.40 0.50 2.2 4.6 21.3 52.4 56.6 2.55 2.41	109年第2季	109. 04. 24-25	0.33	0.37	2.2	3. 7	18. 8	59.9	64.8	2, 20	2.80	0.10	0.19	53	40	1. 22
110年東1章 110,118-19 0.60 0.72 2.3 6.6 27.2 46.8 34.3 2.30 2.70 0.18 0.34 77 55 3.66 110年東2章 110,04,19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.80 0.05 0.09 80 59 4.53 110年東3章 110,07,20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110年東4章 110,10,25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111年東1章 111.1,24-25 0.21 0.36 0.43 0.43 16.9 36.3 38.9 2.10 2.20 0.05 0.08 33 22 44.00 111年東2章 111.04,25-26 0.13 0.18 1.8 2.1 8.2 22.6 29.7 2.00 2.50 0.09 0.15 46 27 22.20 111年東4章 111.10,25-26 0.61 0.73 0.8 1.9 16.4 55.5 78.1 2.70 3.30 0.19 0.25 53 43 34.40 112年東1章 112.01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 112年東4章 112.05,29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.07 2.50 32 11 0.00 112年東4章 112.05,29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.07 2.50 32 11 0.00 112年東4章 112.05,29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.07 2.50 32 11 0.00 112年東4章 112.05,29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 0.05 0.07 2.50 32 11 0.00 112年東4章 112.03,05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年東3章 113.06,18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年東3章 114.08,02-03 0.40 0.50 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年東3章 114.08,02-03 0.40 0.50 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.27 0.06 0.08 0.24 32 21 3.10 114年東3章 114.08,02-03 0.40 0.50 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.27 0	109年第3季	109. 07. 20-21	0.18	0. 21	1.0	1, 5	10.0	31.3	38, 7	2, 20	2.70	0.10	0. 25	20	18	0.86
110年東2季 110.04、19-20 0.27 0.38 2.8 3.5 17.0 63.3 74.4 2.10 2.60 0.05 0.09 80 59 4.53 110年東3季 110.07、20-21 0.28 0.39 1.4 3.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110年東4季 110.10、25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111年東1季 111.1、24-25 0.21 0.36 40.43 40.43 16.9 36.3 38.9 2.10 2.20 0.05 0.08 33 22 44.00 111年東3季 111.7、17-18 0.12 0.16 1.1 1.3 5.6 22.5 27.0 2.00 2.50 0.09 0.15 46 27 22.20 111年東3季 111.05-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 3.30 0.19 0.25 53 43 38.40 112年東1季 112.01,05-96 0.38 0.43 2.9 4.1 11.3 0.9.0 72.8 2.30 2.40 0.11 0.16 82 75 28.60 112年東3季 112.05、29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 40.05 0.12 69 63 8.63 112年東3季 112.03,03-06 0.20 0.30 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 45 32 17.40 113年東3季 113.03,05-06 0.20 0.30 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 45 32 17.40 113年東3季 113.03,05-06 0.20 0.30 2.4 0.20 0.30 0.19 0.25 33 33 30 11.40 113年東3季 113.03,05-06 0.20 0.30 0.24 4.5 1.5 7.2 24.1 34.2 1.94 2.48 4.00 0.50 0.12 29 18 21.60 113年東3季 113.03,05-06 0.20 0.30 0.20 0.30 0.40 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 30 11.40 113年東3季 113.03,05-06 0.20 0.30 0.20 0.30 0.24 8.5 35.0 44.7 2.07 2.43 0.05 0.12 29 18 21.60 114年東3季 113.03,05-06 0.20 0.30 0.40 0.50 2.2 4.6 21.3 55.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年東3季 114.03,02-03 0.40 0.50 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年東3季 114.08,24-25 0.10 0.20 0.40 1.6 4.0 13.6 42.7 61	109年第4季	109. 10. 19-20	0.29	0.45	1.6	2.0	4. 5	68. 9	82. 0	2. 00	2.10	0.06	0.08	89	49	3, 89
110年第4章 111.0,07,20-21 0.28 0.39 1.4 2.7 12.9 42.1 52.2 2.10 2.50 0.08 0.15 53 30 12.20 110年第4章 110.10,25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 1114平第4章 111.1,24-25 0.21 0.36 <0.43 <0.43 16.9 36.3 38.9 2.10 2.20 0.05 0.08 33 22 44.00 111年第2章 111.0,4,25-26 0.13 0.18 1.8 2.1 8.2 22.6 29.7 2.00 2.50 0.09 0.15 46 27 22.20 111年第3章 111.1,27-18 0.12 0.16 1.1 1.3 5.6 22.5 27.0 2.00 2.20 0.06 0.10 26 23 24.00 111年第4章 111.10,25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 3.30 0.19 0.25 53 43 38.40 112年第2章 112.0,68-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 112年第2章 112.05,29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 112年第4章 112.14-15 0.40 0.50 <0.55 1.1 1.2 45.4 53.2 1.8 2.10 <0.05 0.07 2.50 32 11 0.00 113年第4章 113.05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2章 113.05.05-06 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第4章 113.05.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第2章 114.08.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.24 32 21 3.10 114年第2章 114.08.02-03 0.40 0.50 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第2章 114.08.02-03 0.40 0.50 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第2章 114.08.02-05 0.10 0.20 2.0 0.00	110年第1章	110. 1. 18-19	0.60	0.72	2.3	6, 6	27. 2	46.8	34.3	2. 30	2.70	0.18	0.34	77	55	3, 66
110年 年 年 110.10.25-26 0.43 0.58 2.9 4.9 16.4 56.7 81.9 2.30 2.70 0.15 0.27 57 30 7.34 111	110年第2季	110. 04. 19-20	0.27	0. 38	2.8	3, 5	17. 0	63.3	74.4	2. 10	2.60	0.05	0.09	80	59	4. 53
1114 # 1 # 111. 1. 24 - 25	110年第3季	110.07.20-21	0.28	0.39	1.4	3, 7	12. 9	42.1	52. 2	2. 10	2.50	0.08	0.15	53	30	12. 20
1111年第2章 1111、04、25-26 0、13 0、18 1、8 2、1 8、2 22.6 29.7 2、00 2、50 0、09 0、15 46 27 22、20 111年第3章 111、7、17-18 0、12 0、16 1、1 1、3 5.6 22.5 27.0 2、00 2、20 0、06 0、10 26 23 24、00 111年第4章 111、10、25-26 0、61 0、73 0、8 1、9 16.4 53.5 78.1 2、70 3、30 0、19 0、25 53 43 38.40 112年第1章 112、01、08-09 0、38 0、43 2、9 4、1 11、3 69.0 72、8 2、30 2、40 0、11 0、16 82 75 26.60 112年第2章 112、05、29-30 0、21 0、25 1.6 2、5 7.0 48.2 61.9 2、00 2、50 4.0 5 0.12 69 63 8.63 112年第3章 112、08、31 0.50 40.55 1.1 1、2 45.4 53.2 1.8 2.10 40.05 0.07 2、50 32 11 0.00 112年第4章 112、12、14-15 0.40 0.50 2、8 4.8 17.0 51.9 46.6 2.65 3、73 0.09 0.15 84 59 30.30 113年第2章 113.06、18-19 0、20 0、30 1.4 1.5 7、2 24.1 34.2 1.94 2、48 40.026 0.08 38 30 11.40 113年第4章 113.12、20-21 0.40 0.60 2、2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第2章 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3章 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年	110年第4季	110, 10, 25-26	0.43	0.58	2.9	4. 9	16. 4	56.7	81.9	2. 30	2.70	0.15	0.27	57	30	7. 34
1114年3季 111. 7. 17-18 0.12 0.16 1.1 1.3 5.6 22.5 27.0 2.00 2.20 0.06 0.10 26 23 24.00 1114年4季 111. 10.25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 3.30 0.19 0.25 53 43 38.40 1124年1季 112. 01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 1124年2季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 1124年3季 112.08.31 0.61 0.50 <0.55 1.1 1.2 45.4 53.2 1.8 2.10 <0.05 0.07 2.50 32 11 0.00 112年第4季 112.12.14-15 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 84 59 30.30 113年第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	111年第1季	111. 1. 24-25	0.21	0. 36	<0.43	<0.43	16. 9	36.3	38.9	2. 10	2.20	0.05	0. 08	33	22	44.00
1114年4季 111.10.25-26 0.61 0.73 0.8 1.9 16.4 53.5 78.1 2.70 3.30 0.19 0.25 53 43 38.40 1124第1季 112.01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 1124第2季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 1124第3季 112.08.31 0.50 0.50 <0.55 1.1 1.2 45.4 53.2 1.8 2.10 <0.05 0.07 2.50 32 11 0.00 1124第4季 112.12.14-15 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 84 59 30.30 1134第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 1134第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第4季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.24 32 21 3.10 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年83季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10 114年835 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	111年第2季	111. 04. 25-26	0.13	0.18	1.8	2.1	8. 2	22.6	29.7	2.00	2.50	0.09	0.15	46	27	22, 20
112年末1季 112.01.08-09 0.38 0.43 2.9 4.1 11.3 69.0 72.8 2.30 2.40 0.11 0.16 82 75 26.60 112年末2季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 112年末3季 112.08.31	111年第3季	111. 7. 17-18	0.12	0.16	1.1	1, 3	5, 6	22.5	27.0	2.00	2, 20	0.06	0.10	26	23	24. 00
112年第2季 112.05.29-30 0.21 0.25 1.6 2.5 7.0 48.2 61.9 2.00 2.50 <0.05 0.12 69 63 8.63 112年第3季 112.08.31- 0.00 0.50 <0.55 1.1 1.2 45.4 53.2 1.8 2.10 <0.05 0.07 2.50 32 11 0.00 112年第4季 112.12.14-15 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 84 59 30.30 113年第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 38.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45	111年第4季	111.10.25-26	0.61	0.73	0.8	1. 9	16. 4	53.5	78.1	2, 70	3, 30	0.19	0. 25	53	43	38.40
112年第3季 112.08.31- 0.0.01 0.50 <0.55 1.1 1.2 45.4 53.2 1.8 2.10 <0.05 0.07 2.50 32 11 0.00 112年第4季 112.12.14-15 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 84 59 30.30 113年第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 <t< th=""><th>112年第1季</th><th>112.01.08-09</th><th>0.38</th><th>0.43</th><th>2.9</th><th>4.1</th><th>11.3</th><th>69.0</th><th>72.8</th><th>2, 30</th><th>2.40</th><th>0.11</th><th>0.16</th><th>82</th><th>75</th><th>26, 60</th></t<>	112年第1季	112.01.08-09	0.38	0.43	2.9	4.1	11.3	69.0	72.8	2, 30	2.40	0.11	0.16	82	75	26, 60
112年第4季 112.12.14-15 0.40 0.50 2.8 4.8 17.0 51.9 46.6 2.65 3.73 0.09 0.15 84 59 30.30 113年第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 38.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18	112年第2季		0.21	0. 25	1.6	2.5	7. 0	48.2	61.9	2.00	2.50	<0.05	0.12	69	63	8, 63
113年第1季 113.03.05-06 0.20 0.30 2.3 4.0 10.5 36.3 48.9 2.08 2.31 0.07 0.16 45 32 17.40 113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.2	112年第3章		0.50	<0.55	1.1	1, 2	45. 4	53.2	1.8	2. 10	<0.05	0.07	2.50	32	11	0.00
113年第2季 113.06.18-19 0.20 0.30 1.4 1.5 7.2 24.1 34.2 1.94 2.48 <0.026 0.08 38 30 11.40 113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	112年第4季	112, 12, 14-15	0.40	0.50	2.8	4.8	17. 0	51.9	46.6	2.65	3.73	0.09	0.15	84	59	30.30
113年第3季 113.09.23-24 0.20 0.20 1.6 2.4 8.5 35.0 44.7 2.07 2.43 0.05 0.13 45 33 19.30 113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	113年第1季	113, 03, 05-06	0.20	0.30	2.3	4.0	10.5	36.3	48.9	2. 08	2.31	0.07	0.16	45	32	17.40
113年第4季 113.12.20-21 0.40 0.60 2.2 4.6 21.3 52.4 56.6 2.25 2.41 0.07 0.12 29 18 21.60 114年第1季 114.03.02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	113年第2季	113.06.18-19	0.20	0.30	1.4	1, 5	7. 2	24.1	34. 2	1. 94	2.48	<0.026	0.08	38	30	11.40
114年第1季 114、03、02-03 0.40 0.50 3.6 4.7 11.6 68.3 76.2 2.58 3.57 0.08 0.23 88 72 29.40 114年第2季 114、06、03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	113年第3季	113, 09, 23-24	0.20	0. 20	1.6	2, 4	8. 5	35.0	44.7	2.07	2.43	0.05	0.13	45	33	19.30
114年第2季 114.06.03-04 0.20 0.40 1.6 4.0 13.6 42.7 61.8 2.14 2.36 0.08 0.15 25 18 12.30 114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	113年第4季	113, 12, 20-21	0.40	0.60	2.2	4. 6	21.3	52.4	56.6	2. 25	2.41	0.07	0.12	29	18	21.60
114年第3季 114.08.24-25 0.10 0.20 2.0 8.0 20.0 64.0 87.0 2.22 2.72 0.06 0.24 32 21 3.10	114年第1季	114. 03. 02-03	0.40	0.50	3.6	4. 7	11.6	68.3	76. 2	2, 58	3.57	0.08	0. 23	88	72	29.40
	114年第2季	114. 06. 03-04	0.20	0.40	1.6	4. 0	13.6	42.7	61.8	2.14	2.36	0.08	0.15	25	18	12.30
空気品質標準 9 31 - 65 100 60 100 75	114年第3季	114. 08. 24-25	0.10	0. 20	2.0	8, 0	20. 0	64.0	87. 0	2. 22	2.72	0.06	0. 24	32	21	3, 10
	空氣品質	模棒	9	31	-	65	100	60	100					-	75	

^{1、}空氣品質標準為環境部 113 年 9 月 30 日公告。 2、 "*" 表示超出空氣品質標準 3、 "?" 表示無測值或無效值 4、 "-" 表示該測站未設置該項監測儀器 5、"- - 表示無空氣品質標準

表 3.1.1-1 歷年空氣品質監測結果綜合比較表(續4)

		监测项目	一氧化	七碳(ppm)	二氧化	た破(ppb)	二氧化氮 (ppb)	臭草	t(ppb)	總碳氢(t合物(ppm)	非甲烷碳氢	化合物(ppm)	總懸浮微粒	PN ₁₀	落塵量
监测站	測定時間			小時平均值	日平均值	小時平均值	小時平均值			日平均值	小時平均值	日平均值	小時平均值	(ug/m²) 24小時值	(ug/m³) 日平均值	(ton/km²/月) 毎月値
	80年第3季	?	平均值	(最大值)	14. 0	25.0	(最大值) 25.0	平均值?	(最大值) 33.0	1. 60	(最大值) 2.30	0.30	(最大值) 0,60	114	60	_
	80年第4季	?	?	0.90	14. 0	26.0	18.0	?	63. 0	1. 70	2.00	0.30	0.70	131	67	_
	85年第4季	86, 01, 24~25	0.70	0.80	5.8	14.8	28.8	41.0	46.0	2. 70	3.43	_	_	80	60	5. 98
	86年第1李 86年第2李	86, 03, 10-11 86, 06, 28-29	0.90 1.30	1.10	17.0 9.0	35.6 13.0	24.4 14.0	31.0 22.0	44.0 33.0	2. 85	3.54	0.52	0, 69	94 67	66 39	4. 94 1. 40
	86年第3季	86, 09, 20-21	0.60	0.80	6.0	10.0	23.0	32.0	55.0	2. 36	3.40	0.32	0. 76	486 *	174 *	7. 37
	86年第4季	86, 12, 26~27	0.60	0.70	6.0	8.0	24.0	66.0 *	76.0	1. 87	2.63	0.36	0. 64	105	87	5. 73
	87年第1季	87. 03. 23-24	0.60	0.90	8.0	11.0	23.0	47.0	50.0	3, 47	3.92	1.35	1. 64	74	59	7. 68
	87年第2季 87年第3季	87. 06. 25-26 87. 09. 18-19	0.80	1.30	7.0 11.0	12.0 16.0	35.0 31.0	18.0 50.0	49.0 76.0	4. 06 4. 57	4.71 5.08	1.46	1. 81	112 114	68 40	10.10 1.25
	87年第4季	87. 12. 22-23	0.70	0.80	11.0	17.0	13.0	44.0	57.0	4. 46	5.10	1.30	1. 61	41	27	5. 82
	88年第1季	88. 03. 24~25	0.70	0.90	8.0	12.0	19.0	45.0	53.0	2. 69	3.12	0.87	1. 03	92	61	7. 24
	88年第2季	88, 06, 24~25	0.80	0.90	9.0	11.0	22.0	35.0	90.0	3. 04	3.49	1.08	1, 36	102	70	3. 77
	88年第3季	88. 09. 16~17	0.60	0.70	17.0	25.0	21.0	55.0	73.0	2. 96	3.47	0.89	1. 16	125	61	0. 83
	88年第4季 89年第1季	88. 12. 16-17 89. 03. 16-17	0.50	0.70	13.0 12.0	16.0 18.0	18.0 15.0	8.0 13.0	15.0 17.0	1. 12	1.77 2.15	0.31	0. 65 0. 62	114 137	92 60	8. 45 24. 00
	89年第2季	89. 06. 22-23	0.60	0.60	10.0	15.0	15.0	31.0	35.0	2. 30	2.86	0.69	0, 90	196	57	3. 17
	89年第3季	89, 09, 21~22	0.70	0.80	8.0	11.0	15.0	26.0	31.0	3. 00	3.32	0.83	0, 99	158	90	2. 38
	89年第4季	89. 12. 21~22	0.80	0.80	8.0	12.0	14.0	15.0	18.0	3, 15	3.89	0.88	1. 15	108	51	6, 29
	90年第1季	90. 03. 22-23 90. 06. 14-15	0.80	0.90 1.00	14.0 12.0	19.0 23.0	25.0 24.0	22.0 30.0	27.0 36.0	3, 52 0, 74	4.07 3.14	1.18 0.47	1. 40 0. 82	124 83	89 33	4. 25 2. 80
	90年第3季	90. 09. 12~13	0.88	1.20	9.0	14.0	11.0	41.0	56.0	2. 23	2.47	0.47	0. 64	104	35	2. 04
	90年第4季	90. 12. 12~13	0.90	1.10	9.0	14.0	11.0	36.0	42.0	2. 30	2.54	0.61	0. 68	114	62	2. 50
	91年第1季	91. 03. 13~14	0.90	1.10	9.0	13.0	13.0	39.0	42.0	2. 31	2.64	0.63	0, 79	135	45	2. 87
	91年第2季	91. 06. 13~14	0.80	0.90	11. 0	16.0 18.0	13.0 22.0	30.0 31.0	41. 0	2, 20	2.46 3.75	0.59	0.66	93 86	42 47	3, 44
	91年第3季 91年第4季	91. 09. 11~12 91. 12. 11~12	0.70	1.10 0.80	10. 0	13.0	20.0	36.0	41. 0 42. 0	2. 17	2.77	0.59	1.26 0.91	105	55	2, 89
	92年第1季	92. 03. 12~13	0.80	0.90	6. 0	9.0	25.0	28.0	34. 0	2. 92	3.11	0.64	0.78	119	45	3, 30
	92年第2季	92, 06, 11~12	0.70	0.90	6, 0	8.0	25.0	15.0	19. 0	3, 74	4.67	0.86	1.31	63	32	0, 51
숨	92年第3季	92. 09. 05~06	0.80	1.00	7. 0	10.0	24.0	32.0	37. 0	3, 97	4.44	0.86	0.99	88	38	2. 17
西	92年第4季 93年第1季	92, 12, 09~10 93, 03, 10~11	0.70	0.80	10. 0 11. 0	13.0 16.0	20.0 25.0	29.0 32.0	32. 0 36. 0	2. 17	2.77	0.59	0.91	90 164	40 75	4. 49 2. 24
本	93年第2季	93. 06. 23~24	0.90	1.10	8. 0	11.0	26.0	29.0	35. 0	4. 24	5.04	1.10	1.47	86	35	1. 64
	93年第3季	93. 09. 16~17	0.70	0.80	6. 0	7.0	20.0	54.0	63. 0	1. 61	1.95	1.21	1.46	80	32	1. 62
	93年第4季	93. 12. 14~15	0.90	1.00	7. 0	9.0	23.0	28.0	33. 0	2. 29	2.94	0.60	0.95	148	49	1. 64
	94年第1季	94. 03. 23~24 94. 06. 22~23	0.90	0.90	7. 0 6. 0	9.0 8.0	25.0 20.0	36.0 52.0	41. 0 63. 0	2. 25 2. 63	2.77 3.05	0.60	0.82	130 76	60 38	0, 96 0, 96
	94年第3季	94, 09, 25-26	0.60	0.80	6. 0	8.0	20.0	46.0	53. 0	2. 68	3.01	0.73	0.96	98	41	6. 78
	94年第4季	94, 12, 21~22	1.00	1.20	8. 0	12.0	19.0	45.0	51. 0	2. 65	2.96	0.72	0.89	173	54	3, 58
	95年第1季	95, 03, 22~23	1.00	1.40	9. 0	15.0	31.0	40.0	44. 0	3, 10	3.75	1.14	1.53	95	34	8. 72
	95年第2季 95年第3季	95. 06. 14~15	0.80	0.90	7. 0	9.0	26.0 27.0	43.0 37.0	50. 0 46. 0	3, 03 3, 40	3.48 4.76	0.91	1.11	150 139	47 39	4. 07 2. 43
	95年第4季	95. 08. 23-24 95. 12. 06-07	0.70	0.80	7. 0	9.0	25.0	40.0	56. 0	2, 70	2.98	0.67	0.77	83	29	1. 78
	96年第1季	96, 03, 15~16	0.60	0.80	6. 0	7.0	23.0	28.0	53. 0	2. 41	3.21	0.37	0.75	197	71	0. 43
	96年第2季	96, 05, 24-25	0.50	0.70	7. 0	8.0	26.0	33.0	53. 0	2. 48	2.89	0.41	0.58	76	33	1. 07
	96年第3季 96年第4季	96, 08, 16~17	0.40	0.80	4.0	6.0 7.0	19.0 35.0	37.0 32.0	58. 0 69. 0	2. 64 2. 61	3.54 3.62	0.53	0.66 0.33	127 122	56 45	5. 27 0. 31
	96年第4季 97年第1季	96. 11. 15-16 97. 02. 22-23	0.50	0.80	2. 0	4.0	54.0	22.0	46. 0	2. 68	3.08	0.20	0.52	105	40	2. 630
	97年第2季	97. 05. 15-16	0.90	1.28	3. 0	5.0	22.0	31.0	64. 0	2. 74	3.23	0.38	0.45	166	53	0. 727
	97年第3季	97. 08. 21-22	0.32	0.44	3. 0	4.0	15.0	30.0	54. 0	2. 61	2.84	0.42	0.54	63	25	9. 84
	97年第4季	97. 12. 09-10	0.43	0.55	2. 0	3.0	22.0	29.0	64. 0 56. 0	2. 31	2.51	0.23	0.31	128	45 70	0. 28
	98年第1季 98年第2季	98. 02. 23-24 98. 06. 04-05	0.34	0.52	5. 0 3. 0	10.0	36.0 15.0	33.0 38.0	56. 0 55. 0	2. 29 2. 26	2.87	0.27	0.48 0.57	189 61	70 35	1. 20 3. 36
	98年第3季	98. 09. 09-10	0.55	0.76	2. 0	4.0	21.0	32.0	95. 0	2. 46	2.82	0.41	0.63	162	56	1. 78
	98年第4季	98.11.30-12.01	0.53	0.66	4. 0	6.0	21.0	35.0	56. 0	2. 18	2.26	0.24	0.34	109	49	5, 80
	99年第1季	99. 03. 03-04	0.47	0.93	2. 0	4.0	21.0	19.0	44. 0	2, 73	3.24	0.62	0.97	140	70	4. 33
	99年第2季 99年第3季	99, 05, 06-07 99, 08, 10-11	0.44	0.60	3, 0 1, 0	4.0 2.0	15.0 15.0	14.0 19.0	18. 0 49. 0	2, 51	2.86	0.49	0.65 0.54	62 81	34 34	2. 29 1. 51
	99年第4季	99. 10. 07-08	0.50	0.90	2. 0	3.0	15.0	8.0	24. 0	2. 52	2.61	0.49	0.53	79	46	2. 74
	100年第1季	100, 03, 07-08	0.80	1.20	10. 0	15.0	32.0	26.0	44. 0	2. 18	2.25	0.23	0,28	130	51	4. 42
	100年第2季	100. 05. 11-12	0.30	0.40	3, 0	4.0	20.0	22.0	31. 0	2. 48	2.88	0.49	0.55	107	53	3, 01
	100年第3季	100, 09, 02-03	0.40	0.60	8. 0 3. 0	9.0 4.0	23.0 19.0	30.0 28.0	58. 0 65. 0	2, 30 2, 82	2.56 3.13	0.32	0.43 0.52	72 91	35 48	2. 91 1. 91
	100年第4季 空氣品質	100, 11, 15~16 標準	9	35	100	250	250	28.0	120		3.13		0.52	250	125	1. 91
	-	環境部 113 年												200		

^{1、}空氣品質標準為環境部 113 年 9 月 30 日公告。 2、 "*" 表示超出空氣品質標準 3、 "?" 表示總測值或無效值 4、 "-" 表示該測估或無效值 5、"--"表示無空氣品質標準

表 3.1.1-1 歷年空氣品質監測結果綜合比較表(續 5)

101年第1季	101. 02. 25-26	0.40	0.50	5, 0	6, 0	19. 0	16.0	22.0	2.18	2.24	0.15	0.18	86	51	4. 28
101年第2季	101. 05. 23-24	0.28	0.40	4.0	9. 0	20.0	41.0	79.0	2.17	2.61	0. 22	0.34	86	47	6, 57
101年第3季	101. 08. 13-14	0.40	0.70	6.0	8. 0	11.0	21.0	32.0	1. 98	2.08	0.13	0.19	61	20	3. 81
101年第4季	101. 12. 06-07	0.43	0.60	5.0	7. 0	18.0	30.0	47.0	2, 46	2.60	0.45	0.49	91	63	5, 26
102年第1李	102. 02. 17-18	0.35	0.50	3.0	6. 0	15. 0	45.0	57.0	2, 20	2.46	0.30	0.41	129	72	5, 20
102年第2季	102, 05, 16-17	0.31	0.50	6.4	11.0	11.0	23.3	35, 0	2. 22	2, 40	0, 25	0. 32	80	44	6, 04
102年第3季	102. 09. 12-13	0.43	0.50	3.0	4. 0	12. 0	30.1	45, 0	2. 18	2.34	0, 26	0.30	80	56	2, 23
102年第4季	102. 11. 12-13	0, 55	0.70	2.0	5, 0	23. 0	18.1	30.0	2, 29	2, 71	0, 33	0, 45	71	37	6, 10
103年第1李	103. 03. 11-12	0.42	0.60	3.0	6, 0	27. 0	30.7	59.0	2, 23	2, 49	0, 44	0, 50	97	47	2, 76
103年第2季	103, 05, 22-23	0.17	0, 30	1.8	4. 0	17. 0	23.1	40.0	2. 15	2, 60	0, 22	0. 39	55	26	2. 74
103年第3季	103. 03. 22-23	1.69	3, 50	5, 1	10.0	19. 0	23.8	41.0	2, 22	2.68	0, 23	0. 40	92	37	4. 83
103年第4季		0, 50	0. 70	2.8	4. 0	12. 0	37. 0	57.0	2. 04	2, 20	0. 17	0, 23	248	122	4.14
104年第1季	103. 11. 17-18 104. 03. 19-20	0. 81	1, 20	2.5	6.0	16. 0	25.7	48. 0	2. 19	3, 37	0. 08	0. 19	88	45	2. 51
104年第2季	104. 06. 24-25	0.17	0. 23	2.5	4. 0	10.6	19.8	40.7	1. 78	2.00	0, 21	0. 27	42	31	4. 16
104年第3季	104. 09. 22-23	0.23	0. 39	5.8	19.3	29. 4	37.5	66. 7	2. 15	3.11	0. 27	0. 37	50	43	4. 46
104年第4季	104. 10. 23-24	0. 24	0.50	2.7	4. 9	14. 3	29.8	54. 2	2.09	2. 33	0. 21	0. 24	50	48	4. 69
105年第1季	105, 01, 26-27	0.61	0. 80	6.9	18.1	34. 6	50.6	60.6	1. 83	1.87	0. 03	0.06	117	36	0. 28
105年第2季	105, 04, 27-28	0.63	0.70	9.7	13. 2	16. 2	36.3	49.8	1. 89	2.16	0.06	0.13	30	18	3, 57
105年第3章	105, 08, 27-28	0.35	0.50	2.0	2, 0	61. 0	23.0	57.0	2, 30	2.66	0, 46	0. 90	51	22	3, 23
105年第4季	105, 10, 22-23	0.28	0.40	2.6	3.0	23. 0	22.5	47.0	2. 33	2.59	0. 45	0.66	77	32	4. 13
106年第1李	106. 03. 03-04	0.60	0.70	5.0	10.0	12. 0	63.0	70.0	2.44	2.63	0. 34	0.44	91	46	4. 52
106年第2季	106, 06, 08-09	0.40	0.40	2.9	7.0	16.0	31.4	42.0	2.04	2.67	0.06	0. 15	45	21	1.77
106年第3字	106.07.07-08	0.79	0.80	3. 0 8. 0	3, 0 14, 0	8. 0 13. 0	21.0 45.0	29.0	1. 90	2, 00 3, 31	0.18	0. 39	70	34 51	1. 88 3. 21
106年第4季 107年第1季	106, 10, 05-06 107, 03, 03-04	1.30	1. 30	2.1	5, 8	13. 8	45. 0 57. 2	56, 0 69, 9	2. 26		0. 11	0.17	148	44	3. Z1 1. 97
107年第1季	107. 05. 08-04	0. 19 0. 16	0. 37 0. 26	1.2	1.6	5, 8	44.2	51, 6	2. 00	3. 40 2. 40	0, 20	0, 50	75 32	20	1. 86
107年第3季	107. 03. 28-29	0. 20	0, 27	1.8	3, 4	9, 6	50.0	66, 5	1. 90	2. 40	0, 09	0. 14	41	28	2, 05
107年第4季	107. 10. 26-27	0. 20	0. 38	3, 3	8, 3	27. 2	49.0	55, 1	2, 10	2. 10	0, 09	0.14	95	60	3, 22
108年第1李	108. 01. 27-28	0.33	0. 38	2.6	4.8	13.5	50.0	67.6	1, 50	1.60	0, 08	0.14	65	34	3, 22
108年第2季	108. 04. 28-29	0.36	0. 45	3.7	8, 3	22. 4	47.6	58, 9	2, 40	3, 50	0. 19	0. 44	58	37	2, 87
108年第3季	108. 07. 21-22	0.18	0, 25	1.2	2.7	9. 0	29.0	37.9	2, 20	2, 70	0, 08	0.13	46	15	3, 68
108年第4季	108. 10. 24-25	0, 25	0, 28	1.3	2, 2	15. 1	80.0	88.0	2. 20	2, 50	0, 18	0, 27	113	64	5, 12
109年第1李	109. 01. 21-22	0.57	0. 63	1.8	3, 9	19. 4	67.3	72.8	2, 30	2, 70	0. 14	0, 25	87	64	0, 00
109年第2季	109, 04, 23-24	0.19	0. 29	0.8	1, 2	11.4	62.5	66, 7	2, 00	2, 10	0.06	0.08	38	27	1. 54
109年第3章	109. 07. 20-21	0.18	0. 21	1.0	1.5	10.0	31.3	38.7	2, 20	2.70	0.10	0. 25	20	18	0.86
109年第4章	109, 10, 19-20	0.29	0.45	1.6	2. 0	4. 5	68.9	82.0	2. 00	2.10	0.06	0.08	89	49	3, 89
110年第1季	110. 1. 18-19	0.60	0.72	2.3	6, 6	27. 2	46.8	34.3	2, 30	2.70	0.18	0.34	77	55	3, 66
110年第2季	110.04.19-20	0.27	0.38	2.8	3, 5	17.0	63.3	74. 4	2. 10	2.60	0.05	0.09	80	59	4. 53
110年第3季	110.07.20-21	0.28	0.39	1.4	3. 7	12. 9	42.1	52.2	2. 10	2.50	0.08	0.15	53	30	12.20
110年第4季	110, 10, 25-26	0.43	0.58	2.9	4. 9	16.4	56.7	81.9	2, 30	2.70	0.15	0.27	57	30	7. 34
111年第1章	111.1.24-25	0.21	0.36	<0.43	<0.43	16. 9	36.3	38, 9	2.10	2, 20	0.05	0.08	33	22	44.00
111年第2章	111. 04. 25-26	0.13	0.18	1.8	2.1	8. 2	22.6	29.7	2.00	2.50	0.09	0.15	46	27	5, 63
111年第3季	111. 7. 18-19	0.11	0.14	1.6	4. 0	1.8	16.1	24.0	2. 00	2.30	0.07	0.18	30	23	1.54
1114第4季	111.10.25-26	0.53	0.59	1.2	2, 5	15. 7	50.9	56, 3	2, 50	2.60	0.16	0, 20	75	47	20, 50
112年第1季		0.38	0.42	2.8	4. 4	14. 7	52. 7	59.7	2, 20	2.40	0.12	0.18	58	50	27, 70
112年第2季	112. 04. 24-25	0.35	0.47	2.5	5, 0	14. 9	57.2	59.6	2. 00	2.10	0.06	0.11	58	49	5, 62
112年第3章	112.07.27-28	0.25	0. 27	2.9	3, 1	6. 7	41.1	45.5	2, 20	2.80	0.05	0.11	19	- 11	3, 20
112年第4季	112. 12. 14-15	0.40	0.50	4.5	6, 6	17.1	42.7	47.0	2, 59	3, 89	0.07	0.13	74	65	22. 40
113年第1季	113, 03, 05-06	0.10	0. 20	1.3	1.7	9. 6	32.3	46, 9	2. 00	2, 20	0.07	0.12	58	46	12, 30
113年第2季	113.06.20-21	0.30	0.50	1.5	1.6	5, 8	24.7	34.0	1. 98	2.40	0.05	0.09	33	27	4. 30
113年第3季	113, 09, 24-25	0.20	0. 20	1.8	2, 3	7. 6	26.0	45. 4	2. 25	3.46	0.04	0.12	32	22	11.10
113年第4季	113. 12. 19-20	0.30	0.40	<0.68	1.3	17. 9	40.4	43.9	2. 27	2.41	0.09	0.12	64	36	34.10
114年第1季	114. 03. 05-06	0.30	0.40	3.1	3, 5	5, 5	42.4	47.0	2. 18	2.24	0, 05	0.07	47	35	28, 50
114年第2季	114.06.02-03	0.10	0.10	1.0	1.1	8.3	36.1	53.7	2. 03	2.17	0.06	0.11	23	17	5. 20
114年第3季	114. 08. 25-26	0.20	0.40	1.0	2. 0	13.0	47.0	53.0	2.14	2.78	0.04	0.12	67	17	8, 50
空氣品質	標準	9	31	-	65	100	60	100					-	75	

^{1、}空氣品質標準為環境部 113 年 9 月 30 日公告。 2、 "*" 表示超出空氣品質標準 3、 "?" 表示無測值或無效值 4、"——"表示無空氣品質標準

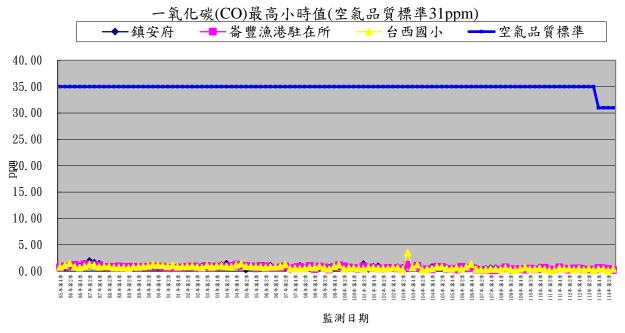


圖 3.1.1-1 本計畫歷次一氧化碳(CO)最高小時值監測結果分析圖

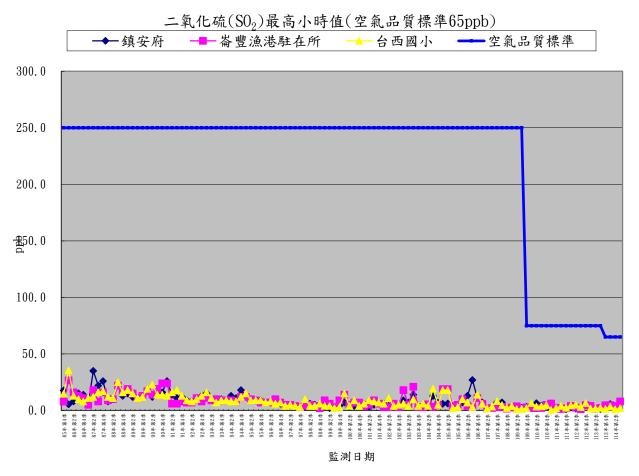
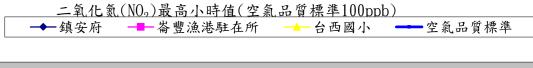



圖 3.1.1-2 本計畫歷次二氧化硫(SO₂)最高小時值監測結果分析圖

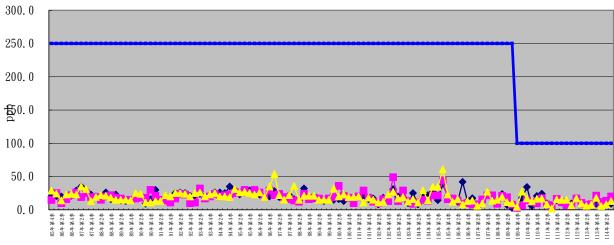


圖 3.1.1-3 本計畫歷次二氧化氮(NO₂)最高小時值監測結果分析圖

監測日期

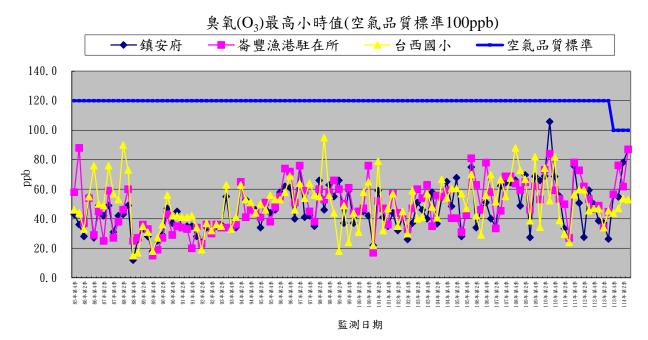


圖 3.1.1-4 本計畫歷次臭氧(O₃)最高小時值監測結果分析圖

圖 3.1.1-5 本計畫歷次總碳氫化合物(THC)最高小時值監測結果分析圖

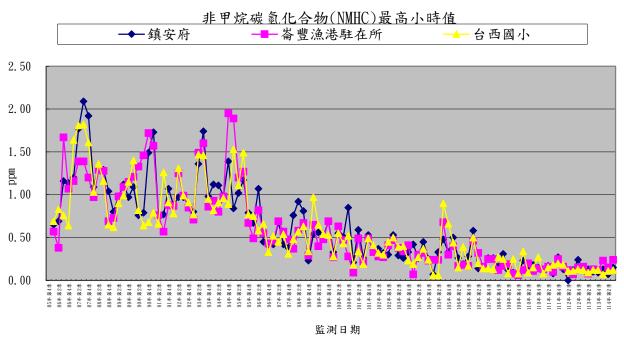


圖 3.1.1-6 本計畫歷次非甲烷碳氫化合物(NMHC)最高小時值監測結果分析圖

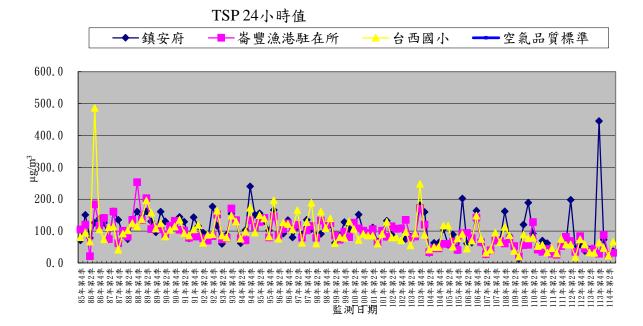


圖 3.1.1-7 本計畫歷次 TSP 24 小時值監測結果分析圖

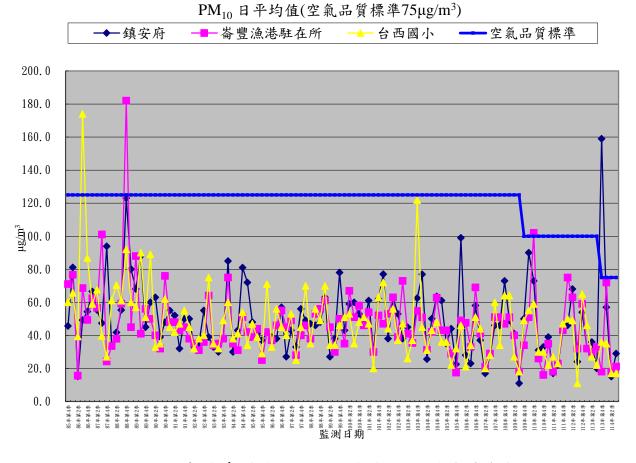


圖 3.1.1-8 本計畫歷次 PM₁₀ 日平均值監測結果分析圖

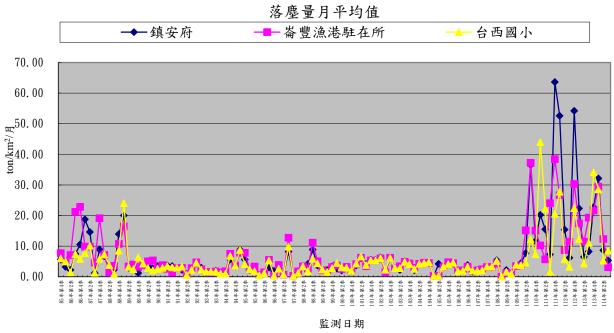


圖 3.1.1-9 本計畫歷次落塵量監測結果分析圖

3.1.2 噪音

歷次監測結果列於表 3.1.2-1 所示,並繪如圖 3.1.2-1~圖 3.1.2-4 所示, 各測站均能音量測值大部分均可符合標準;此外,環境部(原行政院環境保 護署)於 99 年 1 月 21 日以環署空字第 0990006225D 號令、交通部交路字 第 0990085001 號令公告「環境音量標準」修正時段區分之定義,本計畫自 99 年第一季起配合最新法規調整。各測站各時段測值相較於歷次測值分析 如下:

一.L _目

本季各測站 L = 測值介於 52.7 ~69.6 dB(A)之間,與歷次比較 (52.1~83.6 dB(A)),均在各測站測值均在歷次測值變動範圍內。歷次測值中,以安西府、崙豐國小及海口橋測站偶有超出標準,分析過往超標原因,主要為居民活動或鄰近廟宇活動所造成。崙豐國小偶有超過特定噪音管制區,其噪音管制標準之最高容許音量降低 5 分貝之標準之情形。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示,測值介於 51.2~71.1 dB(A),與施工期間之監測值差異不大,並就歷次施工期間之主要噪音源分析,大多來自背景交通增量所造成之噪音音量,與本工程施工無直接關係。

二.L 晚

本季各測站 L 與 值介於 51.3~67.2 dB(A)之間,與歷次比較 (43.3~87.8 dB(A)),均在各測站歷次測值變動範圍內。歷次測值中,安 西府及崙豐國小各有 1 次超出標準限值,海口橋有 2 次超出標準限值,主要受背景噪音源影響所致;而崙豐國小偶有超過特定噪音管制區,其 噪音管制標準之最高容許音量降低 5 分貝之標準之情形。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示,測值介於 41.3~66.1 dB(A),施工期間之監測值比環評報告之測值略為增加,惟就歷次施工期間之主要噪音源分析,大多來自背景音量,且本工程於此時段大多無施工行為,故噪音增量與本工程施工無直接關係。

三.L 夜

本季各測站 L 表測值介於 47.8~62.4 dB(A)之間,與歷次比較 (41.9~71.6 dB(A)),均在各測站歷次測值變動範圍內,且其噪音管制標準之最高容許音量降低 5 分貝之標準之情形。歷次測值中均可符合標準限值,且並無明顯惡化現象。

另就環評報告於麥寮區及新興區、台西區之調查結果顯示,測值介

於 39.5~60.2 dB(A),施工期間之監測值比環評報告之測值略為增加,惟就歷次施工期間之主要噪音源分析,大多來自背景音量,且本工程於此時段大多無施工行為,故噪音增量與本工程施工無直接關係。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表

		監測項目		噪音((1B(A))		振動	(dB)		交通
監測站	測定時間		L¥	LB	Let	Læ	L _{v B}	Lv夜	交通量(PCU/日)	尖峰小時服務水準等級
	85年第4季	86.01.26	63.1	64.9	56.1	55.9	43.6	31.1	2, 910	A
									1,074	A
									874	A
	86年第1季	86.03.02	70.9*	74.1*	64.6	62.2	42.5	33. 3	5, 430	В
									4, 800	В
	86年第2季	86. 06. 27	66. 2	69.3	66. 3	58.8	40.4	34. 7	5, 004 4, 395	B B
	00年 第 2 子	80.00.21	00. 2	09. 5	00. 5	36.6	40.4	34. 1	4, 432	В
									4, 601	В
	86年第3季	86.09.18	67. 3	67.8	64. 5	60.0	42.3	32.7	2, 559	A
									2, 514	A
									1, 221	A
	86年第4季	86. 12. 25	65.7	68.1	63.0	60.1	37. 7	32.6	4,003	A
									1, 466	A
									1, 539	A
	87年第1季	87. 03. 22	68.4	68. 9	65.6	61.0	43.6	33. 7	4, 150	A
									2, 765 1, 710	A A
	87年第2季	87. 06. 23	68. 2	70.8	59. 9	59.5	43. 8	34. 2	4, 245	A
	01-782-7	01.00.20	00. 2	10.0	55.5	55.5	40.0	04. 2	3, 174	A
									2, 268	A
	87年第3季	87. 09. 17	66.8	68. 2	65.1	60.8	44. 3	37.6	5, 946	В
									1, 471	A
									4, 912	A
	87年第4季	87. 12. 22	70.9*	74.0	69.0	63.6	50.0	41.7	7, 455	В
									1, 378	A
安	88年第1季	88. 03. 24	75. 0*	75. 3*	70.4*	66.0	42.6	40.5	4, 896 7, 570	A B
	00年 第1子	66. 05. 24	15.0*	10.0*	70.4*	00.0	42.0	40.5	1, 363	A
									5, 168	A
	88年第2季	88. 06. 23	64.8	68.5	64. 0	59.1	41.6	30.8	1, 031	A
									2, 301	A
									2, 536	A
西	88年第3季	88. 09. 15	68.9	72. 5	65.1	62.6	43.3	36.6	1,844	A
									1, 235	A
	001: 15.15	00.10.15	0.1.0	=0.4	00.4		#0.0	40.0	2, 731	A
	88年第4季	88. 12. 15	64. 2	72.1	63.4	58. 5	52. 3	46.6	2, 579 2, 802	A A
									3, 031	A A
	89年第1季	89. 03. 15	62. 2	64.7	62. 0	56. 9	41.1	34.8	1,070	A
府									2, 316	A
									483	A
	89年第2季	89. 06. 21	67.1	66.6	62.3	62.6	42.5	37. 2	4, 883	A
									4, 481	A
	00 左 切り去	90 00 90	65.0	67.4	64.4	60.7	44.9	40.0	2, 450	A
	89年第3季	89. 09. 20	65.8	67. 4	64. 4	60.7	44. 2	40.0	2, 671 3, 220	A A
									743	A
	89年第4季	89. 12. 20	62.4	64.2	59. 1	59.1	39.6	33. 1	2, 205	A
									1, 953	A
									680	A
	90年第1季	90. 03. 21	61.1	66.1	62.6	56.6	40.1	31.1	1, 104	A
									2, 534	A
	00 左 筍 0 委	00.06.19	62.0	77.04	60.6	EQ. 4	49.0	24.0	558	A
	90年第2季	90.06.13	63.9	77. 2*	63.6	58.4	42.0	34.0	2, 563 2, 518	A A
									1, 079	A A
	90年第3季	90. 09. 12	63. 4	63.1	63. 6	57.8	36.5	32.3	2, 641	A
									2, 464	A
									1, 047	A
	90年第4季	90.12.12	61.4	65.4	62. 9	55. 9	39.0	33.1	2, 521	A
									2, 581	A
									1, 214	A
	91年第1季	91.03.13	66.7	67. 6	66.1	65.5	38.8	34.8	2, 562	A
									2, 588	A
									1, 222	A
	91年第2季	91.06.12	66.5	67.5	62.9	59.4	39.9	34. 2	2,613	A
									2, 540	A
	91年第3季	91. 09. 11	65. 3	69.3	63. 8	58.9	39. 2	35. 0	1, 146 1, 878	A A
	01 下 炉り子	J1. UJ. 11	vv. v	va. v	00.0	JU. 8	00. L	JJ. U	1,883	A A
									433	A
	91年第4季	91.12.11	56. 2	64. 2	58. 5	54.6	38.0	33. 2	2, 559	A
									2, 514	A
									1, 221	A
i	環境品	占質標準	70.0	74.0	70.0	67.0	65.0	60.0		

^{1、}噪音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 日公告「環境音量標準」,99 年 1 月 21 日後為環境部 99 年 1 月 21 日公告「環境音量標準」。 2、振動環境品質標準為參考日本東京都公客振動規制基準值。 3、 "*"表示提出環境品質標準。 4、 "--"表示未效量测站。 5、 "---"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 1)

		監測項目		噪音(dB(A))		振動	(dB)		交通
監測站	測定時間		L _F	La	Liè	L _夜	L _{vB}	L _v 疾	交通量(PCU/日)	尖峰小時服務水準等級
	92年第1季	92. 03. 12	66.8	65. 5	62. 4	55. 8	35. 3	31.1	2, 525	A
					1	1	1		2, 565	A
	09 5 40 5	09.06.11	60.0	65.5	F0 0	F0 1	97.1	01.0	1, 212	A
	92年第2季	92. 06. 11	63. 2	65. 5	58. 3	59.1	37. 1	31.0	2, 509 2, 745	A A
					1	1	1		1, 341	A
	92年第3季	92. 09. 05	61.8	61.0	58. 3	56.4	36.9	31.1	2, 593	A
									2, 693	A
									1, 411	A
	92年第4季	92. 12. 09	68.0	66. 9	60.0	61.1	39. 2	30.9	2, 621	A
									2, 678	A
	93年第1季	93. 03. 10	64.4	65. 1	61.3	57. 9	37. 9	33. 3	1, 445 2, 755	A A
	30十 新 1 子	30. 00. 10	04. 4	05.1	01.0	31.3	01.5	00.0	3, 000	A
									1, 613	A
	93年第2季	93. 06. 22	63.7	66. 1	60.6	58. 2	39. 1	30.8	2, 583	A
									2, 807	A
	00 5 40 5	00.00.10		00.0	0.5.5		10.0	24.0	1, 146	A
	93年第3季	93. 09. 16	66.9	69.3	65. 7	59.4	40.6	34.0	1, 971 2, 894	A A
									1, 151	A
	93年第4季	93. 12. 14	67.8	69.8	64. 2	60.8	41.6	33. 1	1, 197	A
安									400	A
									2, 089	A
	94年第1季	94. 03. 23	69.4	70.3	64. 6	62.3	39. 1	32.6	1, 698	A
					1	1	1		2, 735	A
	94年第2季	04 06 99	62 9	67. 9	62. 3	57. 7	20.0	32. 8	845	A
	94千 弗 2 李	94. 06. 22	63. 2	01.9	02.3	51.1	39.8	32.8	2, 963 3, 538	A A
西					1	1	1		1, 645	A
-	94年第3季	94. 09. 24	64.6	67. 4	61.1	57. 9	39.8	33. 5	2, 633	A
									3, 331	A
									1, 491	A
	94年 第4季	94. 12. 23	63.9	67. 0	60.9	55.8	39.4	34.4	2, 996	A
									3, 611	A
府	95年第1季	95. 03. 22	61.6	64. 3	59. 3	52.8	45. 2	37. 5	1, 759 2, 692	A A
Ng.	55千 第1子	93. 03. 22	01.0	04. 3	39.3	32.6	45.2	01.5	3, 430	A
					<u> </u>	<u> </u>	<u> </u>	<u> </u>	1, 421	A
	95年第2季	95. 06. 14	67.5	70.1	64. 2	59.6	40.1	32.4	3, 059	A
					1	1	1		3, 425	A
	0.00	0.5.05.55		mo -	0.4.5	#c -	20.		1, 850	A
	95年第3季	95. 08. 23	63.1	70.0	64. 0	59.6	33. 9	33. 7	3, 060	A
									3, 424 1, 968	A A
	95年第4季	95. 12. 07	68.2	70.4	63. 0	60.6	39. 4	41.6	3, 010	A A
	20 1 40 27	00.12.01			""	55.5		11.0	3, 538	A
					<u></u>	<u> </u>	<u></u>	<u> </u>	1, 879	A
	96年第1季	96. 03. 13	67.6	67.4	60.7	58.1	35. 2	35.8	2, 505	A
									3, 222	A
	በር ፋ ላቱ በ ፋ	06 05 05	GA C	66.7	64.0	EQ O	20.7	22.0	1, 516	A
	96年第2季	96. 05. 25	64.6	66. 7	64. 9	58.8	39. 7	33. 0	2, 048 3, 135	A A
					1	1	1		1, 189	A
	96年第3季	96. 08. 17	62.6	64.1	60.4	54. 2	35. 5	35.8	2, 311	A
	-				1	İ	1		3, 543	A
					L	L	ļ		1, 420	A
	96年第4季	96. 11. 16	66.7	67.6	59. 7	55.0	35.0	31.8	1, 942	A
					1	1	1		3, 141	A
	97年第1季	97. 02. 24	66.7	67. 4	59.6	54.9	35. 9	31.5	1, 241 1, 741	A A
	0・1 アルチ	01.02.24	VV. 1	01.4	55.0	54. 5	00.0	31.3	2, 162	A
					1	1	1		644	A
	97年第2季	97. 05. 15	68.0	68. 0	61.0	57. 3	36.0	30.6	2, 035	A
					1	1	1		2, 995	A
		0.00	0						1, 165	A
	97年第3季	97. 08. 22	66.2	68. 9	61.0	58.8	35. 4	33. 6	2, 134	A
					1	1	1		3, 099 1, 209	A A
	97年第4季	97. 12. 10	64.8	63. 7	58. 0	52.1	35. 0	30.0	1, 770	A
									2, 708	A
									981	A
	98年第1季	98. 02. 06	63.1	68.1	57. 6	55.7	35. 2	30.8	1,809	A
					1	1	1		3, 008	A
	005 205	00.00.00	er 7	05.0	Fe 0	66.1	26.0	20.0	961	A
	98年第2季	98. 06. 02	65.7	65. 6	58. 8	60.1	36.0	30.0	1, 882 2, 744	A A
					1	1	1		880	A A
	98年第3季	98. 09. 08	64.6	64.7	58. 7	55.6	35. 0	30.5	1, 957	A
					1	1	1		2, 879	A
									869	A
	98年第4季	98. 11. 28	61.4	66.8	60.6	58. 2	35. 6	30.0	1, 841	A
					1	1	1		2, 713	A
	128 LJV 17	后 # 海	70.0	74.0	70.0	67.0	65.0	60.0	792 — —	A
	塚 境 品	質標準	70.0	74.0	70.0	67.0	65.0	60.0		
1、噪音	環境品質標準(99年1月21日前	為環培部 85	年 1 月 31 日	公告 「環 培 音	量標準 , 99	年1月21日:	後為環培部 99	年1月21日公告「	报培弃暑煙淮 ,。

^{1、}噪音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 日公告「環境音量標準」,99 年 1 月 21 日後為環境部 99 年 1 月 21 日公告「環境音量標準」。 2、振動環境品質標準為參考日本東京都公客振動規制基準值。 3、 "*"表示提出環境品質標準。 4、 "--"表示未效量测站。 5、 "---"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 2)

時間 第 2 季 第 3 季 第 4 季 第 3 季 第 4 季 第 3 季 第 4 季 第 3 季 第 4 季	99. 03. 02-03 99. 05. 05-06 99. 08. 10-11 99. 10. 07-08 100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12 101. 08. 13-14	L*	L _g 63.3 67.0 66.6 68.0 70.0 67.6 68.8 68.4	Lag. 58.3 61.2 60.7 58.5 61.8 57.6 60.8	Lag 55. 7 60. 0 59. 9 61. 7 60. 6 61. 4 58. 1	36. 7 36. 5 38. 4 37. 3 37. 2 35. 9 38. 2	32. 0 34. 2 32. 3 33. 3 31. 7 30. 8 30. 2	文通量(PCU/日) 1,901 3,047 927 2,050 3,186 1,037 1,874 3,200 1,040 1,868 3,217 1,117 1,844 3,197 1,130 1,750 3,216 1,017 1,840 2,597 740 1,962 2,755	(文峰小時服務水準) A B
第2季 第3季 第1季 第2季 第3季 第4季 第3季 第4季	99. 05. 05~06 99. 08. 10~11 99. 10. 07~08 100. 03. 06~07 100. 05. 08~09 100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12		67. 0 66. 6 68. 0 70. 0 67. 6 66. 1 68. 8	61. 2 60. 7 58. 5 61. 8 57. 6 60. 8	60. 0 59. 9 61. 7 60. 6 61. 4	36. 5 38. 4 37. 3 37. 2 35. 9	34. 2 32. 3 33. 3 31. 7 30. 8	3, 047 927 2, 050 3, 186 1, 037 1, 874 3, 200 1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 1962 2, 755	A A A A A A A A A A A A A A A A A A A
第3季 第4季 第2季 第3季 第4季 第3季 第4季	99. 08. 10-11 99. 10. 07-08 100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12		66. 6 68. 0 70. 0 67. 6 68. 8 66. 4	60. 7 58. 5 61. 8 57. 6 60. 8	59. 9 61. 7 60. 6 61. 4	38. 4 37. 3 37. 2 35. 9	32. 3 33. 3 31. 7 30. 8	927 2, 050 3, 186 1, 037 1, 874 3, 200 1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A A A A A A A A A
第3季 第4季 第2季 第3季 第4季 第3季 第4季	99. 08. 10-11 99. 10. 07-08 100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12		66. 6 68. 0 70. 0 67. 6 68. 8 66. 4	60. 7 58. 5 61. 8 57. 6 60. 8	59. 9 61. 7 60. 6 61. 4	38. 4 37. 3 37. 2 35. 9	32. 3 33. 3 31. 7 30. 8	3, 186 1, 037 1, 874 3, 200 1, 040 1, 868 3, 217 1, 117 1, 1844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 1962 2, 755	A A A A A A A A A A A A A A A A A A A
第4季 第1季 第3季 第4季 第3季 第4季	99. 10. 07~08 100. 03. 06~07 100. 05. 08~09 100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12		68. 0 70. 0 67. 6 66. 1 68. 8	58. 5 61. 8 57. 6 60. 8	61. 7 60. 6 61. 4 58. 1	37. 3 37. 2 35. 9	33. 3 31. 7 30. 8	1, 037 1, 874 3, 200 1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A A A A A A A A A
第4季 第1季 第3季 第4季 第3季 第4季	99. 10. 07~08 100. 03. 06~07 100. 05. 08~09 100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12		68. 0 70. 0 67. 6 66. 1 68. 8	58. 5 61. 8 57. 6 60. 8	61. 7 60. 6 61. 4 58. 1	37. 3 37. 2 35. 9	33. 3 31. 7 30. 8	1, 874 3, 200 1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A A A A A A A A A
第4季 第1季 第3季 第4季 第3季 第4季	99. 10. 07~08 100. 03. 06~07 100. 05. 08~09 100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12		68. 0 70. 0 67. 6 66. 1 68. 8	58. 5 61. 8 57. 6 60. 8	61. 7 60. 6 61. 4 58. 1	37. 3 37. 2 35. 9	33. 3 31. 7 30. 8	3, 200 1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 1962 2, 755	A A A A A A A A A A A A A A
第1李 第2季 第3季 第4季 第2季 第3季	100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12 101. 08. 13-14		70. 0 67. 6 66. 1 68. 8	61. 8 57. 6 60. 8	60.6	37. 2 35. 9 35. 1	31.7	1, 040 1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 1962 2, 755	A A A A A A A A A A A A
第1李 第2季 第3季 第4季 第2季 第3季	100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12 101. 08. 13-14		70. 0 67. 6 66. 1 68. 8	61. 8 57. 6 60. 8	60.6	37. 2 35. 9 35. 1	31.7	1, 868 3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A
第1李 第2季 第3季 第4季 第2季 第3季	100. 03. 06-07 100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12 101. 08. 13-14	_	70. 0 67. 6 66. 1 68. 8	61. 8 57. 6 60. 8	60.6	37. 2 35. 9 35. 1	31.7	3, 217 1, 117 1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A
第2季 第3季 第4季 第2季 第3季 第4季	100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12	_	67. 6 66. 1 68. 8 66. 4	57. 6 60. 8 63. 4	61. 4 58. 1	35. 9 35. 1	30.8	1, 844 3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A
第2季 第3季 第4季 第2季 第3季 第4季	100. 05. 08-09 100. 08. 26-27 100. 11. 14-15 101. 02. 28-29 101. 05. 11-12	_	67. 6 66. 1 68. 8 66. 4	57. 6 60. 8 63. 4	61. 4 58. 1	35. 9 35. 1	30.8	3, 197 1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A
第3季 第4季 第1季 第3季 第4季	100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12 101. 08. 13~14	_	66. 1 68. 8 66. 4	60.8	58. 1	35. 1	30. 2	1, 130 1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A A A A A A A A A
第3季 第4季 第1季 第3季 第4季	100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12 101. 08. 13~14	_	66. 1 68. 8 66. 4	60.8	58. 1	35. 1	30. 2	1, 750 3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A A A A A A A A A A A A A
第3季 第4季 第1季 第3季 第4季	100. 08. 26~27 100. 11. 14~15 101. 02. 28~29 101. 05. 11~12 101. 08. 13~14	_	66. 1 68. 8 66. 4	60.8	58. 1	35. 1	30. 2	3, 216 1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A A
第4季 第1季 第2季 第3季 第4季	100. 11. 14~15 101. 02. 28~29 101. 05. 11~12 101. 08. 13~14	_ _ _	68.8	63. 4				1, 017 1, 840 2, 597 740 1, 962 2, 755	A A A A A A
第4季 第1季 第2季 第3季 第4季	100. 11. 14~15 101. 02. 28~29 101. 05. 11~12 101. 08. 13~14	- -	68.8	63. 4				2, 597 740 1, 962 2, 755	A A A A
第1季 第2季 第3季 第4季	101. 02. 28-29 101. 05. 11~12 101. 08. 13-14		66. 4		58.8	38. 2	30.4	740 1, 962 2, 755	A A A
第1季 第2季 第3季 第4季	101. 02. 28-29 101. 05. 11~12 101. 08. 13-14	-	66. 4		58. 8	38. 2	30.4	1, 962 2, 755	A A
第1季 第2季 第3季 第4季	101. 02. 28-29 101. 05. 11~12 101. 08. 13-14		66. 4		JO. 0	30. 2	ov. 4	2, 755	A
第2季 第3季 第4季	101. 05. 11~12 101. 08. 13~14	_		57. 8					
第2季 第3季 第4季	101. 05. 11~12 101. 08. 13~14	_		57. 8		1		815	A
第2季 第3季 第4季	101. 05. 11~12 101. 08. 13~14	_			55. 3	32. 6	31.0	2,003	A
第3季 第4季	101. 08. 13~14	_	70.0					2, 912	A
第3季 第4季	101. 08. 13~14	_	70.0					890	A
第4季			1	62.9	60.6	38. 2	31.5	1, 826	A
第4季								2,671	A
第4季		_	68. 7	61.2	61.6	39. 7	33.0	818 1, 933	A A
·第1季	101. 12. 05~06		00.1	V1. L	01.0	00.1	00.0	2, 819	A
·第1季	101. 12. 05~06							821	A
		_	68. 5	59.5	61.9	38. 3	33.8	1,843	A
								2, 786	A
	100 00 10 17		00.0	60.0	FO. 0	00.0	90.7	866	A
領の赤	102. 02. 16~17	_	66. 9	63. 2	59.0	36. 9	32.7	1,848	A A
領の承								2, 757 868	A A
カムチ	102. 05. 17~18	_	66.0	62. 2	58. 3	33. 8	30.0	1, 815	A
						""	50.0	2, 583	A
								801	A
第3季	102. 09. 11~12	_	65.6	60.6	59.0	40.8	34.9	1,818	A
				[]				3, 179	A
第4季	102 11 11 10		65. 7	61.9	59.0	39. 8	30.7	763 1, 890	A A
和4子	102. 11. 11~12	_	65. 7	61.3	58. 9	əə. ŏ	ov. 1	3, 269	A A
								815	A
第1季	103.03.09~10	_	70.7	59.9	59. 2	35. 2	30.0	1, 821	A
								3, 124	A
Mr.C-F	100 05 00 00		70.0	F0 C	00.0	07.0	00.0	809	A
第2季	103. 05. 22~23	_	70.6	59.0	60.0	37. 9	32.9	1,838 3,099	A A
									A A
第3季	103. 08. 27~28	_	67.5	61.4	61.0	36.7	33.4	1, 934	A
				[]				3, 149	A
				ļ		1		804	A
第4季	103.11.18~19	_	60.6	53.0	54.1	38. 7	32.3	1, 886	A
									A
第1季	104 03 10~20	_	64 0	58.6	54 2	37 0	30 a		A A
ハルナ	101.00.13-20		04.0	50.0	J4. 4	01.0	JV. J	3, 329	A
			<u>L</u>			<u>L</u>	<u></u>	743	A
第2季	104.6.29~30	_	66.7	61.0	61.2	38. 5	33.0	1,879	A
								3, 383	A
竹の手	104 0 00 01		05.0	F0 1	CO 1	90 5	00.0		A
・弗3季	104.8.30~31	_	65.8	ə8. l	00.1	38. 5	33.0		A A
									A
第4季	104. 10. 26~27	_	83.6	56.3	58. 2	39. 2	31.2	1,860	A
								3, 310	A
								761	A
第1季	105. 01. 25~26	_	64.4	59.0	55. 7	40.2	31.3	2, 087	A
									A A
第2季	105 05 23~24		73 9	63 0	65.2	50.8	30 9		A A
A- = T			10.0	30.0	30. 2	00.0	30.0	1, 317	A
			<u> </u>					2, 479	A
第3季	105. 08. 26~27	_	63.9	65.4	59.6	40.0	38. 2	1, 781	A
]				3, 313	A
** 4 *	105 10 00 10		00.0	F4 :	F0. 0	90.0	00.0	727	A
第4季	105. 10. 09~10	_	63.0	54.4	53.6	32. 9	30.0		A
									A A
	,質標準	70. 0	74. 0	70.0	67. 0	65. 0	60.0	— —	
環接点	O 100 I								
第第第第第第第	34* 32* 33* 34* 32* 34* 34*	34李 103.11.18-19 31李 104.03.19-20 32李 104.6.29-30 33李 104.8.30-31 34李 105.01.25-26 32李 105.05.23-24 33李 105.08.26-27 34李 105.10.09-10 環境品質標準	34季 103.11.18-19 — 31季 104.03.19-20 — 32季 104.6.29-30 — 33季 104.8.30-31 — 34季 104.10.26-27 — 31季 105.01.25-26 — 32季 105.05.23-24 — 33季 105.08.26-27 — 34季 105.10.09-10 — 環境品質標準 70.0 環境品質標準 70.0 標準 99 年 1 月 21 日前為環境部 85	34季 103.11.18-19	3.4季 103.11.18-19 — 60.6 53.0 3.1季 104.03.19-20 — 64.0 58.6 3.2季 104.6.29-30 — 66.7 61.0 3.3季 104.8.30-31 — 65.8 58.1 3.4季 104.10.26-27 — 83.6 56.3 3.1季 105.01.25-26 — 64.4 59.0 3.2季 105.05.23-24 — 73.9 63.0 3.3季 105.08.26-27 — 63.9 65.4 3.4季 105.10.09-10 — 63.0 54.4 環境品質標準 70.0 74.0 70.0 環境品質標準 70.0 74.0 70.0 環境の資標準 70.0 74.0 70.0 常業 99年1月21日前為環境部 85.9 1月31日公告「環境合	14季 103.11.18-19	14本 103.11.18-19	3.4季 103.11.18-19 — 60.6 53.0 54.1 38.7 32.3 3.1季 104.03.19-20 — 64.0 58.6 54.2 37.0 30.9 3.2季 104.6.29-30 — 66.7 61.0 61.2 38.5 33.0 3.3季 104.8.30-31 — 65.8 58.1 60.1 38.5 33.0 3.4季 104.10.26-27 — 83.6 56.3 58.2 39.2 31.2 3.1季 105.01.25-26 — 64.4 59.0 55.7 40.2 31.3 3.2季 105.05.23-24 — 73.9 63.0 65.2 50.8 30.9 3.3季 105.08.26-27 — 63.9 65.4 59.6 40.0 38.2 3.4季 105.10.09-10 — 63.0 54.4 53.6 32.9 30.0 3.4季 105.10.09-10 — 63.0 54.4 53.6 32.9 30.0 3.4季 105.10.39-10 — 63.0 74.0 70.0 67.0 65.0 60.0	103.08.27-28

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 3)

	3.1.2-		単ルハ		dB(A))	<u> </u>	主 业 (綜合比 較	交通
30/2		監測項目	Lx	La	Luc	La	Lyn	Lva		文·
+	106年第1季	106. 03. 20~21	_	60.9	53, 8	53.2	33. 7	30.0	1, 952 3, 412	A A
Ŧ									839	A
╁	106年第2季	106, 06, 07~08	_	63.0	59. 9	54.8	35, 3	30.0	1, 970 3, 465	A A
F									865	A
t	106年第3季	106, 07, 07-08	_	56.4	64. 5	55.7	33. 7	30.0	2, 021 3, 567	A A
F	100 5 5 65	100 10 00 07		21.2		70.4	27.0	20.0	1, 157	A
t	106年第4季	106. 10. 06-07		71. 7	64. 2	70.4	37. 3	36.0	1, 892 3, 360	A A
F	107 6 9 1 6	107 02 04-05		00.0	50.0	01.7	41. 0	44.0	843	A
安	107年第1季	107. 03. 04~05		66. 9	59. 8	61.7	41.2	44. 3	1, 968 3, 550	A
F	107 5 70 04	107 00 04 05		69. 9	64. 6	59.3	33. 2	30. 0	950	Α.
\pm	107年第2季	107. 03. 04~05		09. 9	04. 0	59.5	33. 2	30. 0	1, 977 3, 380	A A
╀	107 6 8 24	107, 03, 04~05		69. 9	66. 4	58.9	33. 0	30. 9	853	Α
t	107年第3季	107. 03. 04~05		09. 9	00. 4	56.9	33. 0	30. 9	1, 982 3, 377	A
西		107 10 05 00		04.5	50.0	57.0	24 1	20.0	775	A
t	107年第4季	107. 10. 25~26		64. 5	58. 6	57.0	34. 1	30. 0	1, 913 3, 251	A
╀	108年第1章	108. 01. 28~29	_	74.6*	68. 4	67. 4*	36, 3	30. 9	804 1. 866	A
ŧ	1303-46-132	146. 01. 26-23		14.0	00.4	01. 4	55. 5	00.0	3, 175	Â
府	108年第2季	108. 04. 29~30	_	68. 3	60. 4	59.2	36. 7	30. 3	707 1. 842	A A
F									3, 055	A
t	108年第3季	108.08.29~30	_	63.3	57. 2	59.0	36.6	30.1	626 1,738	Â
Ě	1								2, 925	A
$^{\perp}$	109年第1季	109. 01.13~14		67. 7	59. 7	58.9	37. 2	30. 5	595 1, 868	Ā
F	+								2, 877	A
t	109年第2季	109. 04. 29~30		69. 2	63. 8	59.1	36. 6	30. 2	701 1, 791	A
F									2, 750	A
\perp	109年第3季	109. 07. 17~18	_	84. 3	61. 4	60.1	35. 9	47. 3	635 1, 864	A
F									2,620	A
$^{\perp}$	109年第4季	109. 10. 19~20		66. 5	58. 9	59.3	43.7	33. 4	562 1, 807	A B
F									2, 441	A
t	110年第1季	110. 1. 16~17	_	69.5	65. 6	61.8	37. 8	34. 2	587 3, 095	A A
F									2, 702	A
t	110年第2季	110. 04. 17~18	_	83. 7	60. 7	61.6	36.6	31.6	775 3, 346	A
F									2,876	A
╁	110年第3季	110. 07. 16~17	_	71. 1	67. 3	62.3	39. 4	32. 3	862 4, 736	A B
F									4, 039	A
╁	110年第4季	110. 10. 22~23	_	73. 4	62. 0	63.3	39. 3	33. 8	2. 811 4, 711	A B
F									3, 797	В
+	111年第1季	111. 1. 24~25	_	69. 4	59. 9	59.1	36. 4	30. 2	2, 693 4, 769	A A
F									3, 807	В
╁	111年第2季	111.4.1-2	_	69. 7	62. 2	58.8	38, 5	32. 9	2, 639 4, 495	A B
F									3,600	В
$^{+}$	111年第3季	111. 7. 16-17	_	72. 5	60. 3	60.1	44.5	30.4	2, 734 4, 487	B A
F									3, 573	A
╁	111年第4季	111. 10. 24-25	_	75.7*	58. 5	60.2	38. 5	32. 9	2, 837 4, 349	A A
F									3, 380	A
t	112年第1季	112.01.10-11	_	74. 0	70. 0	67.0	36.6	30.1	2, 641 4, 679	A A
F									3, 819	В
╁	112年第2季	112. 04. 01-02	_	75. 8	62. 2	58.4	38. 2	30.0	2, 650 4, 535	A A
F									3, 554	В
+	112年第3季	112.08.31-	_	70. 9	00 =	04.0	99.0	20. 0	2, 614	Α
+	112年第3季	09 01		10.9	66. 5	64.0	33. 9	30.0	4, 362 3, 257	A B
$^{+}$	1								2, 492	A A
L	112年第4季	112.08.31-	_	77.6*	67. 4	67. 2*	34. 3	30.0	4, 180	В
+	1	09. 01							3, 136	A
+	112 4 40 1 4	113, 03, 05-06	_	73. 7	62. 7	62.0	34. 7	30.0	2, 498 4, 119	A B
t	110十月1年	20.00.00		10.1	1.20	02.0	34. 1	30. 0	3, 024	A A
I									2, 462	В
\perp	113年第2季	113. 05. 30-31		67. 6	59. 7	61.8	55.3	41.8	4, 068	В
+	+							-	3, 006 2, 487	A
t	113年第3季	113. 09. 27-28		74.1*	63. 2	59.6	33. 2	30.0	4, 174	A B
L									3, 119	Α
╀		119 10 00 0							2, 572	A
+	113年第4季	113. 12. 20-21		66. 7	56. 7	57.8	33. 2	30.0	4, 239 3, 130	B A
t									2, 548	A
I	114年第1季	114. 03. 01-02		69.6	58. 5	59.0	33. 1	30.0	4, 579	В
Ĺ									3, 346	A
+	114 5 40 0 5	114.06.01-02		72.5	61. 0	59.3	34. 0	30.0	2, 856	B B
+	114年第2季	114. 00. 01-02		12.5	01.0	38.3	34.0	30. 0	4, 126 2, 846	B A
İ									2, 500	В
F	114年第3季	114. 08. 23-24		65. 9	60. 1	59.1	34. 4	30.8	4, 234	С
+	1								2, 955	В
+	18 10	2. 位 1年 准	70.0	74.0	70.0	67.0	65.0	60.0	2, 571	B
		●質標準 9 年 1 月 21 日 前	70.0 為環境部 85 a	14.0 年1月31日か	70.0 生「报接会量	- 提准., 99. 组	65.0 E.1月21月後	60.0 為環倍部 99		
<u>L</u>	· 壤 增 品 冒 煙 准 🛚	/4 = 1 14 用		平1月31日公 基準值。	N - N - H M	1 3 77 4	/4 1 14 1枚		, =	- 7 + 7 W T] .

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 4)

	~	1 /4-01	<u> </u>	<u> </u>	111 -	, , , , , ,	<u> </u>	04 67 21	C 10/1 10 70 7	文化(院门
er11		監測項目	*	ı	dB(A))			(dB)		交通
監測站	測定時間	96 01 19	L ₄	L _B	L _®	L _夜	L _{v fl}	L _{vē}	交通量(PCU/日)	尖峰小時服務水準等級 A
	85年第4季	86. 01. 18	70.5	70.1	72. 6	68. 3	34.1	30. 9	8, 954	A
	86年第1季	86. 03. 04 86. 06. 26	75.5*	69. 0	72. 0	60. 2	33.4	31.6	9, 149	A
	86年第2季	86. 09. 19	70. 0 69. 8	71. 7 70. 6	66. 9 66. 0	64. 3 64. 3	34. 9 40. 9	31. 8 35. 2	9, 614 11, 001	A A
	86年第4季	86. 12. 27	70.3	71.3	66. 6	65. 4	34. 8	30. 0	10, 212	A
	87年第1季	87. 03. 24	64. 2	72.8	71. 9	67. 0	33.8	30. 2	11, 438	A
	87年第2季 87年第3季	87. 06. 25 87. 09. 16	66.3 61.2	71.3 66.4	69. 7 62. 4	66. 4 58. 6	35. 2 43. 7	30. 1 37. 3	11, 540 6, 355	A A
	87年第4季	87. 12. 18	63.5	67.8	65. 0	61.4	37.1	34. 8	8, 999	A
	88年第1季	88. 03. 23	62.5	68. 1	64. 8	62. 8	35. 8	32. 3	8, 563	A
	88年第2季 88年第3季	88. 06. 23 88. 09. 14	64. 4 64. 1	66. 2 67. 0	64. 1 65. 2	61. 5 64. 8	35. 5 43. 8	31. 1 36. 8	7, 084 7, 719	A A
	88年第4季	88. 12. 15	70. 0	69.8	68. 0	65. 8	36.6	30. 4	8, 529	A
海	89年第1季	89. 03. 15	67. 8	69. 0	64. 5	60.8	39.6	30. 4	7, 908	A
/#¥	89年第2季	89. 06. 21	67. 0	67.8	65. 4	64. 1	38. 3	29. 8	9, 126	A
	89年第3季	89. 09. 19	68. 2	68.5	65. 3	62. 0	37. 3	29. 7	10, 175	A
豐	89年第4季	89. 12. 19	66. 4	68.8	66. 9	64. 5	39.6	33. 1	9, 199	A
22.	90年第1季	90. 03. 20	46. 0		50. 5	48. 4	45. 8	42. 9	7, 626	A
				53.4						
抓	90年第2季	90.06.12	63.6	62.8	59. 7	57. 9	36.9	31.7	7, 899	A
橋	90年第3季	90. 09. 11	70.3	72. 4	67. 9	63. 1	37. 4	32. 6	8, 175	A
	90年第4季	90. 12. 11	68. 2	68. 7	60. 9	59. 6	37. 3	33. 1	7, 966	A
	91年第1季	91. 03. 12	62.7	63. 8	60. 8	58. 0	36.7	31. 9	7, 904	A
	91年第2季	91. 06. 11	55. 2	64. 0	59. 5	56. 9	36. 2	31.7	7, 977	A
	91年第3季	91. 09. 10	69. 0	72. 2	68. 1	65. 0	38. 4	34. 2	6, 888	A
	91年第4季	91. 12. 10	63. 9	65. 3	59. 9	56. 0	36.6	32. 3	7, 785	A
	92年第1季	92. 03. 11	68. 2	71.4	62. 4	60. 4	37. 3	30.0	7, 581	A
	92年第2季	92. 06. 10	68. 8	65. 7	60. 2	60.6	32. 9	30.0	6, 884	A
	92年第3季	92. 09. 04	63. 1	64. 1	57. 0	56. 3	36. 1	30. 0	7, 534	A
	92年第4季	92. 12. 08	65. 2	64. 2	57. 2	59.6	38.7	32. 4	7, 658	A
	93年第1季	93. 03. 09	64. 3	65. 0	61. 3	56.3	34. 3	31.5	8, 037	A
	93年第2季	93. 06. 22	65. 0	69. 1	66. 6	63. 0	37. 6	33. 2	8, 275	A
	93年第3季	93. 09. 15	60. 9	63. 3	60. 7	58. 8	36. 2	30.8	6, 088	A
	93年第4季	93. 12. 13	68. 7	71.0	69. 2	64. 5	35. 7	30. 1	6, 816	A
	94年第1季	94. 03. 22	68. 4	70.8	69. 7	63. 7	37. 7	32. 7	7, 104	A
	94年第2季	94. 06. 21	64.6	65. 8	61. 9	59. 1	39.3	32. 3	8, 942	A
	94年第3季 94年第4季	94. 09. 24 94. 12. 22	63. 7 63. 5	63. 0 64. 3	60. 8 59. 0	57. 5 56. 5	39. 2 38. 8	32. 1 32. 7	8, 302 9, 485	A A
	95年第1季	95. 03. 21	70.7	71.5	67. 9	64. 2	37. 7	30. 7	9, 279	A
	95年第2季	95. 06. 13	72. 3	70.2	61. 9	65. 6	40.7	32. 0	8, 489	
	95年第3季	95. 08. 22	65. 5	64. 2	60. 7	55. 7	36. 9	35. 2	9, 274	A A
	95年第4季	95. 12. 07	65. 0	67. 1	64. 4	62. 7	39. 4	37. 4	8, 637	A
	96年第1季	96. 03. 13	70.4	71.1	64. 1	64. 0	37. 7	36. 8	9, 530	A
	96年第2季	96. 05. 25	68. 9	70.5	68. 7	66. 4	40.1	35. 6	9, 033	A
	96年第3季	96. 03. 23	66.6	67. 9	64. 7	64. 1	38. 0	36. 9	8, 576	A
	96年第4季	96. 11. 15	67. 1	67. 4	63. 4	63. 0	38. 9	33. 8	8, 321	A
	97年第1季	97. 02. 25	67.1	67. 4	63. 3	63. 0		35. 4	8, 296	
							41.1			A
	97年第2季 97年第3季	97. 05. 15 97. 08. 22	67. 8 65. 4	68. 2 65. 3	65. 7 62. 3	64. 4 62. 4	37. 6 37. 1	34. 0 34. 6	8, 470 8, 561	A A
	97年第4季									
	98年第1季	97. 12. 07 98. 02. 04	64. 8 64. 7	67. 8 65. 5	65. 6 61. 1	62. 2 61. 0	37. 5 41. 7	33. 7 36. 5	8, 588 8, 155	A A
	98年第2季	98. 06. 02	66. 6	66.1	60. 3	61.4	36.6	30. 7	8, 190	A
	98年第3季	98. 09. 08	65. 0	64.5	59. 6	58. 0	37.1	30. 7	8, 389	A
	98年第4季	98. 11. 28	62. 9	68.8	61.8	58. 6	37. 9	30. 0	8, 268	A A
		30.11.20 品質標準	75. 0	76. 0	75. 0	72. 0	70. 0	65. 0		
	環境品質標準	99年1月21日前	前為環境部 8.5	年 1 月 31 日					99年1月21日公告	「環境音量標準」。
7 . In the		放会去日本由台县	per /\ c4* 1s* 46; 143	Mai ff ill it.						

「噪音環境品質標準99年1月21日前為環境部85年1月31日公告「環境音量標準」2、振動環境品質標準為多考日本東京都公客振動規制基準值。
 「**表示超出環境品質標準。
 「一本表示表致置測站。
 「一"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 5)

	湖定時間 99年第1車 99年第2車 99年第3車 99年第4車 100年第1車 100年第2車	監測項目 99.03.02-03 99.05.06-07 99.08.10-11 99.10.07-08	L*	L _a 66. 4 65. 5 65. 1	dB(A)) L _M 60. 5 61. 2 61. 7	L _æ 62.1 62.1	#K.#b) L _{v.B} 38. 9 38. 6	(dB) L _{vat} 35. 7 34. 8	交通量(PCU/日) 8,792 8,932	交通 尖峰小時服務水準等級 A
	99年第1章 99年第2章 99年第3章 99年第4章 100年第1章	99. 05. 06-07 99. 08. 10-11 99. 10. 07-08	_	66. 4 65. 5 65. 1	60. 5 61. 2	62.1 62.1	38. 9	35. 7	8, 792	A
	99年第2季 99年第3季 99年第4季 100年第1季	99. 05. 06-07 99. 08. 10-11 99. 10. 07-08		65. 5 65. 1	61. 2	62.1				
	99年第3季 99年第4季 100年第1季	99. 08. 10~11 99. 10. 07~08		65. 1			38. 6	34, 8	8 039	
	99年第3季 99年第4季 100年第1季	99. 08. 10~11 99. 10. 07~08	_							A
	99年第4章 100年第1季	99. 10. 07-08	_			60.9	39. 1	33, 7	9, 013	A
	100年第1季		_	00.0					-,	
				69.8	66. 8	62.7	38. 5	36. 8	8, 774	A
	100年第2季	100.03.06~07	_	65. 5	59. 2	62.5	36. 9	34. 9	8, 634	A
		100.05.09~10	_	65. 5	60. 5	62.0	39. 4	34. 7	8, 510	A
	100年第3季	100.08.26~27	_	64. 7	59. 2	59.8	36. 2	30.0	8, 299	A
	100年第4季	100.11.13~14	_	66. 8	63, 2	61.5	36. 4	31. 5	7, 635	A
				69.5	65. 4	65.6	37. 7	35. 2		
	101年第1季	101.02.27~28	_						8, 799	A
	101年第2季	101.05.11~12	_	69. 7	65. 8	65.2	35. 1	30. 1	7, 709	A
\rightarrow	101年第3季	101.08.13~14	_	63. 5	61. 0	58.9	37. 6	31. 9	8, 372	Λ
\Box	101年第4季	101.12.6~07	_	63.6	60.8	59.1	35. 9	30. 9	8, 252	A
$\overline{}$	102年第1季	102.02.15~16	_	66. 5	63. 4	59.9	35. 2	35. 2	7, 488	A
1 1	102年第2季	102.05.16~17	_	69. 4	67. 1	61.6	43. 7	36. 1	8, 117	Α
$\overline{}$			_	64. 6	60. 7	60.6				
$\overline{}$	102年第3季	102, 09, 12~13	_				41.7	35. 4	7, 905	A
+	102年第4季	102.11.10-11	_	69. 1	67. 4	62.1	31. 7	30. 2	7, 791	A
\perp	103年第1季	103.03.11~12	_	68. 5	62. 9	62.0	35. 2	30. 9	7, 958	A
T	103年第2季	103.05.24~25	_	67.8	61. 8	63.1	35. 8	34. 4	6, 626	A
$\overline{}$	103年第3季	103.08.26~27	_	68. 4	62. 3	65.1	34. 3	30. 9	6, 926	A
$\overline{}$	103年第4季	103, 11, 16-17	_	68. 9	65. 7	65.5	34. 5	31. 7	7, 574	Λ.
	104年第1季	104.03.21-22	_	67. 3	64. 7	64.3	32. 9	30. 8	6, 112	Ā
\Box	104年第2季	104.06.29-30	_	67.8	61. 5	67.5	31.4	30.1	7, 155	A
	104年第3季	104. 08. 29-30	_	69.0	65. 5	61.8	31. 4	30. 1	5, 978	A.
	104年第4季	104, 10, 26~27 105, 01, 25~01, 2	_	68. 8	64.7	61.6	36. 1	31.5	6, 942	A
	105年第1季 105年第2季	100.04.20-04.2		71. 2 70. 7	67. 8 65. 8	64.3 64.9	35. 1 40. 3	31. 5 31. 4	5, 654 5, 234	A.
	105年第2季	105. 08. 25~26	_	69. 0	66. 0	61.9	35. 0	30. 5	7, 399	A
Ť	105年第4季	105. 10. 09~10	_	68. 7	65. 9	61.4	32. 7	30. 2	6, 020	A
$\overline{}$		106, 03, 20-21	_	71. 2	66. 9	64.4	36. 4	34. 6		A
	106年第1季		_						7, 694	
$\overline{}$	106年第2季	106, 06, 06~07	_	70.6	66. 6	64.3	35. 8	30. 8	7, 728	A
$\bot\bot$	106年第3季	106, 07, 22~23	_	69.7	66. 0	62.6	44.1	44. 5	7, 296	A
	106年第4季	106. 10. 05-06	_	68.6	65. 2	63.7	36. 1	32. 3	7, 736	A
	107年第1季	107. 03. 04~05	_	71. 7	68. 3	66.2	36. 8	32. 2	6, 904	A
-	107年第2季	107. 06. 04-05	_	69. 2	65. 4	63.7	35. 5	35. 2	6, 160	A
_										
-	107年第3季	107. 07. 04-05	_	71.0*	68. 7	65.5	32. 8	30. 0	5810.0*	A
$+\!\!+\!\!\!+$	107年第4季	107. 10. 25~26	_	71. 2*	68, 2	66.2	35. 7	32. 1	6000. O*	A
$\perp \perp$	108年第1季	108.01.28~29	_	71.4*	68. 3	65.7	36. 4	33. 0	5547.5*	Δ
T	108年第2季	108. 04. 29~30	_	74.7*	71.1*	69.7	36. 7	31. 9	4921.0*	A
\top	108年第3季	108. 08. 29~30	_	70.3*	66. 6	64.8	35. 4	31. 5	4996.5*	A
	109年第1季	109. 01. 13~14	_	71. 4*	68. 4	67.3	37. 2	33. 5	4395. 5*	A
$\overline{}$			_							
-	109年第2季	109. 04. 29~30	_	70.4*	66. 0	65.6	37. 9	33, 9	4363. 0*	A
$\perp \perp$	109年第3季	109.07.17~18	_	70.4	66. 6	63.0	34. 4	30. 1	4, 516	Λ
	109年第4季	109.10.19-20	_	70.6	66. 5	65.2	45.6	35. 7	4, 307	A
	110年第1季	110. 1. 16~17	_	76. 2*	71. 6	70.6	37. 1	33. 8	4, 432	A
+	110年第2季	110. 04. 17~18	_	71.0	67. 8	65.1	35. 7	30. 5	5, 351	A
-										
-	110年第3季	110.07.16~17	_	70. 4	65. 7	64.8	37. 0	33. 7	3, 775	A
\rightarrow	110年第4季	110. 10. 22-23	-	71.3	66. 9	64.0	39. 3	36. 0	3, 230	A
$\bot\bot$	111年第1季	111. 1. 24~25	-	72.6	67. 8	65.9	37. 9	34. 8	5, 751	A
	111年第2季	111.4.1~2	_	74. 2	68. 4	66.3	37. 7	34. 0	5, 331	В
\top	111年第3季	111. 7. 16-17	_	70.5	68, 3	64.2	33. 7	30. 2	5, 421	A
$\overline{}$	111年第4季	111. 10. 24-25	_	71. 1	66. 1	66.1	37. 7	34. 0	5, 362	A
-										
-	112年第1季	112.01.10-11	_	70.5	68. 3	64.2	40. 4	38. 7	5, 233	A
$+\!+$	112年第2季	112.04.01-02	-	71.5	67. 7	64.8	35. 3	30. 3	5, 140	Δ
	112年第3季	112. 08. 31- 09. 01	-	74. 2	70.4	68.0	42.0	38. 4	4, 495	A
++	119年登4番		_	70. 9	87.0	85.7	98.7	90 0	A E00	4
	112年第4季	112. 12. 14-15	-	70. 3	67. 2	65.7	36. 7	32. 2	4, 568	Δ
$\perp \perp$	113年第1季	113.03.05-06	-	71.3	67. 3	65.6	38. 5	33. 3	4, 408	Α
+	113年第2季	119 05 00 01	_	71 9	87.0	gq 0	99 1	32. 0	4 940	
		113.05.30-31	_	71. 3	67. 2	63.2	38. 1	04.0	4, 340	Δ
	110+4-24	113.09.27-28	-	70.4	62. 9	63.7	38. 2	31. 0	4, 187	Δ
	113年第3季	110.00.21-28				62.8	38. 2	91.0	4.045	Λ
	113年第3季			71 0				31. 0	4, 345	Α.
		113. 12. 20-21	-	71.6	68. 1	02.0	55. E		4, 040	-
	113年第3季		-	71. 6 70. 6	68. 1 69. 0	63.4	34. 4	30. 4	4, 772	Α
	113年第3季 113年第4季 114年第1季	113. 12. 20-21 114. 03. 01-02		70. 6	69. 0	63.4	34. 4	30. 4	4, 772	A
	113年第3季 113年第4季	113. 12. 20-21								
	113年第3季 113年第4季 114年第1季	113. 12. 20-21 114. 03. 01-02		70. 6	69. 0	63.4	34. 4	30. 4	4, 772	A
	113年第3季 113年第4季 114年第1季 114年第2季 114年第3季	113. 12. 20-21 114. 03. 01-02 114. 06. 01-02	-	70. 6 69. 8	69. 0 67. 2	63.4 63.1	34. 4 35. 1	30. 4 30. 8	4, 772 4, 297	A A

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 6)

3 3 3 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L* 63. 5 69. 0 67. 5 64. 3 62. 8 63. 5 71. 7* 64. 9 68. 5 69. 4 71. 1*	L _a 68.6 71.0 70.4 71.1 64.7 67.1 71.1 68.0 68.5	L _{ob} 66. 1 62. 2 66. 4 60. 4 59. 1 64. 3 67. 0	L _® 57. 8 60. 3 63. 2 56. 2 56. 6 60. 3	L _{v a} 43. 2 36. 9 41. 4 41. 8	L _{v&} 36. 0 32. 9 33. 4 34. 1	交通量(PCU/日) 3,754 10,373 10,354	尖峰小時服務水準 A B C
3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	69. 0 67. 5 64. 3 62. 8 63. 5 71. 7* 64. 9 68. 5 69. 4	71. 0 70. 4 71. 1 64. 7 67. 1 71. 1 68. 0 68. 5	62. 2 66. 4 60. 4 59. 1 64. 3 67. 0	60. 3 63. 2 56. 2 56. 6	36. 9 41. 4 41. 8	32. 9 33. 4	10, 373 10, 354	В
3	67. 5 64. 3 62. 8 63. 5 71. 7* 64. 9 68. 5 69. 4	70. 4 71. 1 64. 7 67. 1 71. 1 68. 0 68. 5	66. 4 60. 4 59. 1 64. 3 67. 0	63. 2 56. 2 56. 6	41. 4 41. 8	33. 4	10, 354	
7 4 5 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	62. 8 63. 5 71. 7* 64. 9 68. 5 69. 4	64. 7 67. 1 71. 1 68. 0 68. 5	59. 1 64. 3 67. 0	56. 6		34. 1		
1 5 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	63. 5 71. 7* 64. 9 68. 5 69. 4	64. 7 67. 1 71. 1 68. 0 68. 5	64. 3 67. 0		40.		11,500	С
5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	71. 7* 64. 9 68. 5 69. 4	71. 1 68. 0 68. 5	67. 0	60.3	43. 4	37. 1	10, 852	В
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	64. 9 68. 5 69. 4	68. 0 68. 5			40. 1	32. 3	11, 321	В
3 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	68. 5 69. 4	68. 5	64. 5	64. 5	41.6	35. 8	11, 407	В
3 3 5 5	69. 4			61.1	45. 3	40.5	12, 260	С
5 5		F0 -	65. 1	61.4	44. 6	36.4	7, 688	В
5	71.1*	72. 3	71.5*	67.0	42.7	36.7	15, 557	С
5		73. 9	63. 4	65. 3	44. 4	37. 9	10,662	С
5	64. 7	64. 3	58. 7	56.1	42. 4	34. 2	8, 026	В
	67. 7	66. 9	63. 0	59.8	41.0	33. 3	9, 940	С
ı I	56. 5	58. 9	56. 9	48. 8	38. 7	31.2	8, 950	В
	66. 6	63. 8	57. 0	60. 2	37. 7	32. 2	9, 056	В
	67. 6 62. 9	63. 6 63. 0	64. 9 58. 8	58. 2 53. 6	40. 9 39. 6	33. 5 36. 0	10, 369 8, 508	C B
	62. 2	62. 1	57. 3	53. 2	38. 0	31.0	10, 261	С
	66. 1 63. 7	64. 2 64. 1	58. 1 62. 5	56. 7 57. 8	37. 6 40. 4	30. 4 32. 7	8, 375 8, 581	B B
2	69. 0	68. 2	69. 3	58. 1	40.3	31.9	8, 458	В
	59. 2	61.9	57. 8	54.9	36.1	31.1	8, 616	В
	66. 1 63. 4	65. 7 62. 6	63. 6 56. 7	58. 6 54. 7	37. 0 35. 1	32. 6 30. 7	8, 547 7, 090	B B
-	61. 4	63. 5	57. 5	53. 8	38. 1	31.6	8, 800	В
-	62. 6	62. 7	58. 7	52. 4	35. 6	30. 0	7, 957	В
_	61. 9	63. 4	57. 5	53. 7	34. 0	30. 0	9, 011	В
	61. 5	62. 0	56. 9	52. 5	33. 2	30.0	8, 919	В
	60. 1	62. 5	56. 9	52. 3	36. 3	30.0	9, 655	В
	59. 2	64. 0	61. 0	53. 0	43. 8	33. 3	10, 922	С
	65. 7	66.5	63. 8	59. 4	37. 6	33. 2	9, 812	С
	61.5	63. 3	58. 4	54. 7	37. 6	31.9	8, 130	В
-	62. 9	62. 3	57. 5	55. 2	36. 7	30.0	8, 428	С
2	65. 7	69. 2	66. 5	60.0	36. 8	32. 4	8, 420	В
	61.4	64. 0	58. 6	55. 2	32. 1	30.4	11, 353	С
1	60. 9	62. 4	56. 1	52. 1	32. 0	30.8	10, 910	С
2	61.0	67. 7	60. 9	53. 8	31.9	31.3	12, 081	С
ı	63. 2	62. 8	58. 4	52.6	35. 3	30.0	11, 325	С
3	62. 8	64. 3	60.0	56. 1	41.2	33. 9	12, 094	С
-	66. 2	65. 4	60. 6	55. 3	38. 8	32. 2	11, 251	С
	59. 3	64. 2	57. 5	53. 4	41.9	34. 5	10, 134	В
	65. 7	65. 7	60. 0	56. 3	41.4	33. 6	9, 551	В
	67. 3	68. 1	64. 4	61.1	40. 3	32. 9	9, 243	В
	60. 0	62. 2	59. 2	56.3	41.7	33. 9	9, 153	В
	63. 7	63. 7	57. 8	54. 3	41.8	32. 2	8, 804	В
	60. 5	64. 7	57. 6	52. 2	36. 2	30.6	8, 882	В
	57. 4	61.0	53. 7	49. 9	36. 1	30.0	8, 961	В
	61. 4	64. 2	55. 6 59. 0	52. 5 55. 5	35. 1 36. 7	33. 8	9, 113	B B
_	66. 1 68. 0	66. 1 65. 8	59. 0 58. 8	55. 5 55. 5	36. 7 36. 6	31. 1 32. 8	8, 466 7, 887	В
	63. 7	65. 0	58. 9	55. 2	42. 1	30. 0	7, 900	В
	64. 1	64. 1	57. 9	54. 8	39. 4	30. 0	7, 968	A
	64. 2	66. 8	61. 2	57. 2	36. 8	30. 9	7, 445	A
03	-	63. 2	57. 2	55. 5	38. 7	31.0	8, 156	A
07	_	63. 0	57. 2	56. 0	38. 4	30. 0	7, 896	A
11	_	64. 8	63. 6	57. 5	44. 0	30.0	8, 237	A
08	_	63. 9	59. 6	54. 5	39. 1	31.3	8, 300	A
08	_	63. 7	58. 4	55. 4	40.0	32. 2	8, 081	A
09	_	66. 5	63. 3	60. 1	37. 0	30. 3	7, 039	A
27	_	65. 6	61.3	56.6	35. 3	30. 2	6, 872	A
15	_	65. 1	60. 4	57. 1	37. 7	30.5	7, 007	A
28	_	63. 6	60. 0	57. 2	34. 4	31.4	7, 269	A
		63. 7	59. 8	55. 1	36. 9	30. 9	6, 407	A
14	_	63. 4	56. 0	55. 7	39. 3	32. 2	7, 306	A
06		64. 3	60. 9	56.6	37. 0	30.6	7, 058	A
		74. 0	70.0	67. 0	65.0	60.0		
	15 28 12 14 06 1 日前為 東京都公	15 — 28 — 112 — 14 — 066 — 70.0 1 日前為環境部 8:東京都公等振動規	15 — 65.1 28 — 63.6 12 — 63.7 14 — 63.4 06 — 64.3 70.0 74.0 1 日前為環境部 85 年 1 月 31 日 東京都公客振動規制基準值。	15 — 65.1 60.4 28 — 63.6 60.0 12 — 63.7 59.8 14 — 63.4 56.0 06 — 64.3 60.9 70.0 74.0 70.0 1 目前為環境部 85 年 1 月 31 日 公告「環境音快京都公客报動規劃基準值。	15 — 65.1 60.4 57.1 28 — 63.6 60.0 57.2 12 — 63.7 59.8 55.1 14 — 63.4 56.0 55.7 06 — 64.3 60.9 56.6 70.0 74.0 70.0 67.0 1 日前為環境部 85 年 1 月 31 日公告「環境音量標準」、5 東京都公等振動規制基準值。	15 — 65.1 60.4 57.1 37.7 28 — 63.6 60.0 57.2 34.4 12 — 63.7 59.8 55.1 36.9 14 — 63.4 56.0 55.7 39.3 06 — 64.3 60.9 56.6 37.0 70.0 74.0 70.0 67.0 65.0 1日前為環境部85年1月31日公告「環境企業標準」、99年1月21日	15 — 65.1 60.4 57.1 37.7 30.5 28 — 63.6 60.0 57.2 34.4 31.4 12 — 63.7 59.8 55.1 36.9 30.9 14 — 63.4 56.0 55.7 39.3 32.2 06 — 64.3 60.9 56.6 37.0 30.6 70.0 74.0 70.0 67.0 65.0 60.0 1 日前為環境部 85 年 1 月 31 日公告「環境音量標準」、99 年 1 月 21 日後為環境部 東京都公等振動規制基準值。	15 — 65.1 60.4 57.1 37.7 30.5 7,007 28 — 63.6 60.0 57.2 34.4 31.4 7,269 12 — 63.7 59.8 55.1 36.9 30.9 6,407 14 — 63.4 56.0 55.7 39.3 32.2 7,306 06 — 64.3 60.9 56.6 37.0 30.6 7,058 70.0 74.0 70.0 67.0 65.0 60.0 — — 1 日前為環境部 85年1月31日公告「環境音量標準」、99年1月21日後為環境部 99年1月21日公告東京都公等振動規制基準值。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 7)

		監測項目		噪音(dB(A))		級數	(dB)		交通
监测站	测定時間		Lx	La	L	La	L _{v s}	Lva	交通量(PCU/目)	尖峰小時服務水準等級
	102年第1季	102. 02. 15~16	_	65. 4	62. 3	58.5	35. 3	30. 9	6, 475	A
	102年第2季	102.05.16~17	_	61. 9	57. 8	60.2	40.1	42.1	6, 456	A
	102年第3季	102.09.10~11	_	65. 6	59, 1	54.5	39. 2	31, 8	6, 530	A
	102年第4季	102.11.11~12		61.5	56. 7	59.9	38. 0	30. 4	6, 381	A
	103年第1季	103, 03, 10~11	_	63. 5	59. 4	54.5	36. 9	31. 7	6, 195	A
	103年第2季	103.05.22-23		63. 4	57. 9	54.8	38. 1	33, 7	6, 022	A
	103年第3季	103. 08. 26-27	_	63. 0	56. 5	55.1	38. 0	32. 8	6, 116	A
	103年第4季	103, 11, 17~18	_	65. 6	60. 7	61.1	40.4	32. 6	6, 370	A
*	104年第1季	104, 03, 19-20		62. 6	56. 7	57.2	39. 0	31. 5	6, 525	A
Ť	104年第1季	104. 06. 29~30		63. 8	58. 8	58.4	38. 7	31. 6	6, 933	A
					64. 8	62.6	38. 7	31. 6		
	104年第3季	104. 08. 29~30		73. 7					5, 756	A
霊	104年第4季	104. 10. 26-27 105. 01. 25-01. 2		64. 2	58. 6	55.4	37. 4	30. 5	6, 858	A
\vdash	105年第1季	105.04.25-04.2	_	67. 9	62. 8	58.8	40.3	32. 3	8, 689	A
Ш	105年第2季	6	_	67. 9	62. 6	60.1	42. 4	34. 1	7, 684	A
100	105年第3季	105, 08, 25~26	_	69. 0	65. 0	61.3	43. 4	39. 2	6, 903	A
	105年第4季	105. 10. 09~10	_	58. 7	57. 5	52.4	36. 4	34. 1	6, 073	A
$\sqcup \sqcup$	106年第1率	106, 03, 20~21		69. 9	65. 3	61.8	42. 9	35. 0	7, 051	A
45	106年第2季	106, 06, 06~07	_	69.5*	64. 0	64. 0*	42. 7	33. 5	7, 212	A
	106年第3季	106, 07, 22~23	_	70.5*	64. 9	63, 1*	42.6	38. 6	7, 410	A
	106年第4季	106. 10. 05-06	_	73. 2*	67.1*	64. 7*	41.8	36. 8	7, 497	A
	107年第1季	107. 03. 04~05	_	71.1*	65.8*	66.1*	38. 7	31. 7	7, 261	A
	107年第2季 107年第3季	107. 03. 04-05 107. 03. 04-05		69. 1* 72. 2*	67. 1* 68. 0*	63, 4* 64, 9*	38. 0 40. 4	32. 9 36. 4	7, 044 6, 667	A
	107年第4季	107. 10. 25~26	_	74. 2*	70.6*	66.5*	35.4	30. 3	6, 879	Å
	108年第1季	108.01.28-29	_	71. 2*	67. 3*	64.1*	40.3	32. 9	6, 481	A
	108年第2季 108年第3季	108, 04, 29~30		70.0* 70.1*	65. 4* 66. 3*	62, 1* 60, 8	41.8	33, 3 33, 6	5, 481 5, 829	A A
	108年第4季	108. 10. 28-29	ı	68. 5	63, 5	61.6	41.0	33. 0	5, 713	Å
	109年第1季	109. 01. 13~14	_	72.6*	64. 8	62.0	37.1	33. 8	5, 661	A
	109年第2季	109.04.29~30	_	70.0*	62. 4	59.8	38, 3	31. 4	5, 700	A
	109年第3季	109. 07. 17~18	_	66. 8	63, 2	60.4	38. 1	32. 7	5, 835	A
	109年第4季 110年第1季	109. 10. 19~20 110. 1. 16~17		69. 2* 66. 7	64. 5 64. 5	60.9 59.0	43. 0 37. 0	31. 4 31. 2	5, 697 7, 440	B C
	110年第2季	110.04.17-18	_	67. 0	69.0*	59.8	36. 7	31. 4	5, 770	В
	110年第3季	110. 07. 16~17	_	75. 2* 67. 9	72.5* 64.6	69. 3* 60. 1	39. 1 35. 6	31. 9 30. 8	7, 628	В
	110年第4季 111年第1季	110. 10. 22~23 111. 1. 24~25		71. 1*	65, 8*	63.4*	41. 8	33, 2	7, 498 7, 523	C B
	111年第2季	111.4.1-2	_	78.0*	70.8*	60.9	39. 9	33. 0	7, 450	c
$\sqcup \!\!\! \perp$	111年第3季	111. 7. 16-17	_	69.1*	65. 0	61.4	36. 9	32. 3	7, 768	В
$\sqcup \!\!\! \perp$	111年第4季	111. 10. 24-25	_	68. 6	63. 6	61.7	39. 9	33. 0	7, 126	В
$\sqcup \!\!\! \perp$	112年第1季	112.01.10-11	_	69.1*	65. 0	61.4	40.7	32. 7	6, 491	В
	112年第2季	112.04.01-02	_	68. 8	64. 2	62. 8*	37. 1	31. 7	7, 051	С
	112年第3季	112. 08. 31-	_	70.5*	62, 2	60.8	39. 4	31. 4	7, 232	С
	112年第4季	112. 12. 14-15	_	73.5*	69.6*	73.5*	40.0	60. 0	7, 116	С
	113年第1季	113. 03. 05-06	_	68. 0	62. 0	60.3	44. 7	33. 4	7, 097	В
	113年第2季	113.05.30-31	_	68. 5	63. 1	61.5	40.7	33. 5	6, 835	В
	113年第3季	113. 09. 27-28		69.9*	63, 3	61.9	45. 5	38. 4	6, 872	В
	113年第4季	113. 12. 20-21	_	65. 1	61. 9	58.8	45. 5	38. 4	7, 202	С
	114年第1季	114. 03. 01-02	_	66. 6	64. 0	61.1	38. 9	33. 8	6, 955	С
	114年第2季	114.06.01-02		66. 6	61. 6	60.7	38. 8	32. 1	6, 733	В
	114年第3季	114. 08. 23-24	_	66. 5	62. 5	60.2	40.2	33. 5	6, 944	С
		6 質標準	65.0	69. 0	65. 0	62.0	65. 0	60.0		
\vdash	-96-960	- A 40-1	2210	001 V	0010	0210	0010	VV1 V		I

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 8)

	3.1.4-		単ルウ			/ X X			-	
		監測項目		噪音((dB(A))		振動	(dB)		交通
監測站	測定時間		L _#	La	L _®	L _夜	L _{v B}	$L_{v\bar{q}}$	交通量(PCU/日)	尖峰小時服務水準等級
	85年第4季	86. 01. 20	61.2	70.4	57. 4	54.0	45. 0	32. 9	4, 305	A
	86年第1季	86. 03. 01	67. 1	69. 8	65. 5	61.4	42. 1	34.7	6, 878	A
	86年第2季	86, 06, 27	68. 3	69. 0	65. 9	60. 7	39. 8	34. 8	5, 965	A
	86年第3季	86. 09. 18	67. 8	68. 3	66. 5	60.4	40. 5	35. 7	6, 345	A
	86年第4季	86. 12. 25	67. 0	68. 8	64. 8	61.2	39. 7	31.7	6, 508	A
	87年第1季	87. 03. 22	68. 9	69. 4	67. 6	60.8	41.5	36.6	6, 769	A
	87年第2季	87. 06. 23	69.7	69. 6	66.8	59.6	42. 3	34.5	6, 725	A
	87年第3季	87. 09. 18	69. 0	72. 7	69.3	63. 2	40.3	32. 9	6, 567	A
	87年第4季	87. 12. 23	68. 7	69. 7	67. 6	60. 4	39. 2	31. 4	5, 813	A
-/-										
海	88年第1季	88. 03. 24	70.7	73. 2	72. 0	67. 3	40. 1	38. 3	5, 425	A
	88年第2季	88. 06. 24	75. 0	76. 8*	75. 3*	71.6	41.0	37. 9	4, 764	A
	88年第3季	88. 09. 16	63.6	65. 1	58. 5	55. 7	40.3	31.6	5, 611	A
	88年第4季	88. 12. 16	62.6	64. 2	58.9	56.0	40.4	30.6	6, 100	A
	89年第1季	89. 03. 16	60.5	62. 4	54.5	55. 7	40. 2	32.8	12, 188	A
	89年第2季	89. 06. 22	63. 2	61. 2	59. 6	61.5	44. 8	40.5	6, 183	A
	89年第3季	89. 09. 21	70.4	69. 9	68. 1	67. 0	42. 1	43. 9	8, 036	A
	89年第4季	89. 12. 21	68. 8	67. 3	64. 4	64. 8	42. 3	33. 3	5, 959	A
	90年第1季	90. 03. 22	59.1	65. 9	65.8	65. 2	40.7	37. 9	7, 285	A
	90年第2季	90. 06. 14	71.1	71. 5	68. 3	63. 0	37. 4	32. 3	5, 936	A
	90年第3季	90. 09. 13	71.0	74. 2	68. 9	65. 8	38. 9	33.4	6, 130	A
D D	90年第4季 91年第1季	90. 12. 13 91. 03. 14	75. 1* 69. 8	73. 8 70. 0	71. 7 70. 0	69. 9 66. 7	43. 9 41. 6	39. 7 31. 2	5, 573 5, 816	A A
	91年第2季	91. 05. 14	66.7	66. 0	61.4	61.8	35. 8	33. 2	6, 058	A
	91年第3季	91. 09. 12	69. 4	68. 8	62. 2	61.3	36. 9	30.8	4, 668	A
	91年第4季	91. 12. 11	62. 5	67. 3	62. 7	59. 4	34. 1	31. 9	6, 429	A
	92年第1季	92. 03. 12	66. 3	68. 3	62. 3	58. 6	37. 9	30.6	5, 955	A
	92年第2季									
		92. 06. 11	65. 4	66. 1	61.7	59. 8	37. 1	30.8	5, 471	A
	92年第3季	92. 09. 05	65. 8	67. 3	58. 6	59. 2	41.6	33. 6	5, 979	A
	92年第4季	92. 12. 09	69. 3	70. 5	62. 4	60.0	37. 2	32. 4	6, 874	A
	93年第1季	93. 03. 10	76.1*	79.5*	87. 8*	61.2	36. 4	31.8	8, 051	A
	93年第2季	93. 06. 24	71.5	70. 2	66.0	64.0	41.9	33. 1	8, 157	A
橋	93年第3季	93. 09. 16	67. 4	70. 5	68.8	65. 7	39. 1	31.9	5, 046	A
	93年第4季	93. 12. 14	66. 7	70. 8	63. 1	61.5	39. 3	30.8	6, 038	A
	94年第1季	94. 03. 23	71.0	72. 0	64. 6	63. 9	41. 2	33. 8	6, 751	A
	94年第2季	94. 06. 22	68. 4	69. 7	65. 3	63. 1	40. 7	32. 3	8, 077	A
	94年第3季	94. 09. 25	66. 6	67. 9	65. 1	59. 5	40. 9	32. 8	8, 040	A
	94年第4季	94. 12. 23	60.8	65. 2	59. 5	56. 0	40. 7	32. 3	8, 112	A
	95年第1季	95. 03. 22	67.0	68. 7	66.5	60.8	41.5	34. 2	7, 595	A
	95年第2季	95. 06. 14	64.8	66. 9	63. 4	59.8	36. 0	32.5	7, 163	A
	95年第3季	95. 08. 23	68.0	70. 1	67. 9	62.5	39. 7	33. 7	7, 125	A
	95年第4季	95. 12. 06	63.7	66. 3	61.9	58. 3	36. 4	33.0	7, 585	A
	96年第1季	96. 03. 13	63. 2	66. 1	62. 4	56. 4	40. 9	35. 3	8, 785	A
	96年第2季	96, 05, 26	63. 4	67. 0	61.8	56. 6	40. 1	33. 7	8, 728	A
	96年第3季	96. 08. 27	62. 8	65. 8	63. 7	56. 8	34. 5	32. 3	5, 282	A
	96年第4季	96. 11. 15	69. 5	69. 6	64. 2	60.6	33. 9	30.0	6, 305	A
	97年第1季	97. 02. 22	65. 7	68. 3	59. 2	56. 4	34. 2	30.8	4, 730	A
	97年第2季	97. 05. 17	62. 8	67. 0	62. 2	58. 6	34. 1	32. 0	4, 496	A
	97年第3季	97. 08. 22	64. 4	64. 2	60.2	56. 7	33. 5	31.3	5, 292	A
	97年第4季	97. 12. 10	64. 9	63. 5	59.1	55. 4	39. 6	33. 9	5, 608	A
	98年第1季	98. 02. 06	62. 1	65. 7	58. 1	54.0	33. 1	30.8	5, 171	A
	98年第2季	98. 06. 04	61.9	65. 0	60.0	54. 9	34. 7	31.8	5, 669	A
	98年第3季	98. 09. 10	64. 4	64. 1	59. 0	54. 3	35. 3	30.0	5, 492	A
	98年第4季	98. 11. 30	64. 3	69. 1	58. 9	53. 7	40. 2	30. 1	5, 488	A
	99年第1季	99. 03. 03~04	_	66. 5	60. 7	61. 8	49. 3	44. 8	5, 743	A
	99年第2季	99. 05. 06~07		64. 5	60. 3	58. 2	36. 0	30.0	5, 635	A
	99年第3季	99. 08. 11~12		64. 2	58. 0	60. 2	35. 0	48. 3	5, 567	A
	99年第4季	99. 10. 08~09	_	69. 7	59. 4	59. 8	35. 5	32. 4	5, 120	A
	100年第1季	100. 03. 06~07	_	64. 3	59. 0	57. 6	36. 8	33. 9	4, 744	A
	100年第2季	100. 05. 09~10		64. 3	61.1	52. 8	37. 0	34. 1	4, 643	A
	100年第3季	100. 08. 27~28		64. 8	58. 5	58. 5	32. 6	30.0	5, 155	A
	100年第4季	100. 11. 13~14	_	65. 6	59. 2	55. 9	37. 0	30.0	4, 881	A
	101年第1季	101. 02. 28~29	_	65. 9	59.6	54. 6	32. 8	30.8	5, 642	A
	101年第2季	101. 05. 12~13	_	70. 3	60.5	62. 9	37. 2	30.3	4, 576	A
	101年第3季	101. 08. 14~15		65. 1	59. 9	60. 4	38. 0	31.4	5, 513	A
								30. 0		
	101年第4季	101. 12. 04~05		65. 3	62. 3	59. 6	35. 1		5, 360	A
1、碾车		名質標準 99 年 1 日 21 日 ii	75.0	76.0 年1月31日	75.0	72.0 暑煙進.,99	70.0 年1月21日	65.0 後 為 環 培 部 90	— —) 年 1 月 21 日 公 告	「環接辛暑煙準 . 。
		99 千 1 万 21 口月 鸟参考日本東京者			一口 水化目	± 10 T] . 22	, 1,4,21,4	人叫"机机"了	1 1 1 2 1 1 12 2	~~

^{1、}喉音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 2、振動環境品質標準為參考日本東京都公審振動規制基準值。 3、 ""表示超出環境品質標準。 4、 "一"表示未設置測站。 5、 "一"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 9)

$\overline{}$	· -	3.1.2-	4 可	単ルラ	人 不 日	7代 五	人人	型 里 皿	闪而力	(X 1 (() /)
Ш			監測項目		噪音(dB(A))		报數	(dB)		交通
監測	站	测定時間		L	Lq	Lut	Lg	L_{rq}	Lva	交通量(PCU/日)	尖峰小脐服務水準等級
		102年第1季	102. 02. 15~16	_	64. 8	60.8	56.2	37. 2	31.1	5, 161	A
П	П	102年第2季	102. 05. 18-19	_	67. 6	63. 6	61.5	45.3	36.0	4, 533	A
П		102年第3季	102. 09. 10-11	_	67. 4	62. 6	63. 4	44. 9	35.1	5, 063	A
П	\Box	102年第4季	102. 11. 10-11	_	66. 9	62.3	61.4	44. 4	34. 9	4, 712	A
П		103年第1季	103, 03, 10-11	_	66. 8	58. 3	57.9	34.1	30.0	4, 876	A
		103年第2季	103. 05. 23-24	_	66. 8	58. 3	57.9	35. 9	34. 2	4, 344	A
		103年第3季	103. 08. 27-28	_	64. 3	58. 0	61.1	32.5	30.0	4, 730	A
	\neg	103年第4季	103. 11. 16-17	_	65. 0	63. 9	57. 0	32. 9	31.6	4, 719	A
Н	\dashv	104年第1季	104. 03. 20-21	_	65, 2	62. 5	58.6	32. 4	30, 0	4, 216	A
-		104年第2季	104. 6. 29-30	_	64. 0	65. 6	58. 1	30. 7	30, 7	4, 410	A
2	ŧ	104年第3季	104. 8. 30-31	_	65. 7	59. 6	59. 1	30. 7	30.7	4, 455	A
Н	\vdash		104. 8. 30-31		56. 7	52. 2	52. 3	31.5	30. 0	4, 604	
Н	\vdash	104年第4季 105年第1季	104. 10. 26-27		66. 0	58. 6	59. 1	30.0	30. 0	3, 100	A A
- 1	1				69. 9	58. 7	68. 5	32. 6	30. 0		
Н	\vdash	105年第2季	105. 04. 26-27	_						2, 711	A
Н		105年第3季	105. 08. 26-27	_	56. 8	52. 0	53.6	32.1	30.0	4, 496	A
- 1	*	105年第4季	105. 10. 10-11	_	65. 6	60.5	59. 4	32.1	30.0	4, 449	A
Н	\vdash	106年第1季	106. 03. 20-21	_	66. 8	59. 0	58. 4	40.1	33. 5	4, 742	A
Н	\dashv	106年第2季	106. 06. 07-08	_	66. 4	60. 2	58.6	30.0	30.0	4, 821	A
\vdash	\vdash	106年第3季	106. 07. 07-08	_	65. 9	73. 1	58. 8	39. 9	40. 4	4, 840	A
Н		106年第4季	106. 10. 06-07	_	79. 2*	74. 0	60.8	31.4	30. 4	4, 403	A
Н		107年第1季	107. 03. 04-05	_	64. 4	59. 1	58. 4	32. 2	30. 2	4, 707	A
Н	\vdash	107年第2季 107年第3季	107. 03. 04~05 107. 03. 04~05	_	65. 5 67. 4	60. 8 63. 1	59. 2 63. 2	30. 0 55. 4	30. 0 52. 9	4, 587 4, 247	A A
		107年第4季	107. 10. 25-26	_	64. 2	59. 7	59.3	32.7	30.0	4, 478	Ä
Н	\vdash	108年第1季	108, 01, 28-29 108, 04, 29-30	_	70. 6 67. 8	61. 3 61. 0	63. 0 65. 0	34. 0 32. 0	30. 0 30. 0	4, 712	A
		108年第2季 108年第3季	108. 04. 29-30	_	63. 4	59. 3	59. 0	31.6	30.0	4, 445 4, 278	A A
Щ	П	108年第4季	108, 10, 28-29	_	73. 8	67. 2	66.8	36. 2	32.1	4, 175	Å
Н	\vdash	109年第1季	109. 01. 13-14	_	65. 9 64. 5	59. 2 58. 7	62. 7 59. 3	33. 0 36. 4	30. 0 30. 8	4, 296	A
Н	\dashv	109年第2季	109. 04. 29-30	_	64. 4	58. 8	59. 7	35. 7	33, 6	4, 588 4, 238	A
Н	\vdash	109年第3季	109. 07. 17-18	_	65. 8	57. 5	59. 7	35. 1	30. 0	4, 238	A A
		110年第1季	110. 1. 16-17	_	65. 5	59. 2	57.3	32.0	30.0	3. 876	Å
\vdash	\sqcup	110年第2季	110.04.17-18	_	65. 9	59.6	56.7	31.4	30.0	5, 517	A .
		110年第3章 110年第4章	110. 07. 16~17 110. 10. 22~23	_	64. 1 73. 4	57. 0 54. 0	58. 0 53. 1	38. 2 34. 8	38. 8 30. 6	4. 192 3. 542	A A
		111年第1季	111. 1. 24-25	_	64. 1	56. 0	56.9	32.4	30.0	1, 985	A
Н	\vdash	111年第2季	111. 4. 1-2	_	70. 9	63. 8	62.0	32. 4	30.0	1, 970	A .
Н	\vdash	111年第3季	111. 7. 16-17	_	78.6*	63. 9	64. 0	38. 0	36.8	1, 839	A
Н	\dashv	111年第4季	111. 10. 24-25	_	67. 6	59. 3	60.6	35. 2	30.9	1, 856	A
Н	\vdash	112年第1季		_	78.6*	63. 9	64. 0	33.8	30.0	1, 932	A
Н	\vdash	112年第2季	112. 04. 01-02 112. 08. 31-	_	66. 1	61. 2	59.7	34. 2	30.0	2, 142	A
Ц		112年第3季	09.01	_	63. 6	58. 7	58. 1	31.7	30.0	1, 899	A
Ц		112年第4季	112. 12. 14-15	-	67. 7	57. 0	58. 9	33. 7	30.0	1, 860	A
Ц		113年第1季	113. 03. 05-06	-	68. 9	61. 1	63.3	34. 6	30.0	1, 847	A
Ш		113年第2季	113.05.30-31	-	66. 8	60.3	58.1	35. 4	30.1	1, 864	A
		113年第3季	113, 09, 27-28	-	63. 7	70.3	55.1	32. 3	30.0	1, 794	A
		113年第4季	113, 12, 20-21	_	64. 8	59. 0	55. 5	32. 3	30.0	1, 779	A
		114年第1季	114. 03. 01-02	_	63. 7	59. 1	57.3	30.0	30.0	1, 759	A
		114年第2季	114.06.01-02	_	64. 2	59. 2	57.0	32. 2	30.0	1, 696	A
		114年第3季	114. 8. 23-24	_	64. 5	60.6	57.4	31.2	30.0	1, 787	A
		環境品	3.質標準	75.0	74.0	70.0	67.0	65.0	60.0		
, pB	<u> </u>	1 4 口形描述 0	0 年 1 日 21 日 前		年1日31日	小 上 「 摺 培 卒	品超准.,0		後 為 摺 培 郎 (99年1月21日公告	「垃圾水品海海。

■ 1、噪音環境品質標準 99年1月21日前為環境部 85年1月31日公告「環境音量標準」, 99年1月21日後為環境部 99年1月21日公告「環境音量標準」。 2、振動環境品質標準為參考日本東京都公害振動規制基準值。 3、 "*表示超出環境品質標準。 4、 "--"表示未設置測站。 5、 "--"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 10)

1	5.1.2-1		単ルラ			人文文				(水(河 10)
監測站	測定時間	監測項目	L _¥	噪音(c L _H	B(A)) L _®	L _夜	振動 L _{v H}	(dB) L _{v夜}	交通量(PCU/日)	交通 尖峰小時服務水準等級
	79年第一次		50.1	54. 4	51.4	47. 2		_	_	_
	79年第二次		50.8	52.1	48. 9	42.1	_	_	_	_
	87年第3季	87. 10. 28	51.1	56. 9	45. 2	49. 2	32.8	30.0	837	A
	87年第4季	87. 12. 24	62. 9	65. 3	61.0	60.3	39.0	30.0	687	A
	88年第1季	88. 03. 25	62.3	62.5	60.7	55.5	37. 5	30.0	632	A
	88年第2季	88. 06. 24	56. 2	61.8	54. 8	54. 4	35. 5	30.0	607	A
	88年第3季	88. 09. 16	51.9	58. 0	46.3	46.4	38. 5	33. 5	1, 815	A
	88年第4季	88. 12. 16	57. 2	62. 6	57. 1	55. 1	34. 2	30.1	1, 131	A .
	89年第1季	89. 03. 16	61.5	61.6	59.8	61.1	41.5	36.0	2, 063	A
	89年第2季	8. 06. 22	62. 1	62. 7	56.6	56.4	42. 9	35.6	2, 187	A
	89年第3季	89. 09. 21	63. 1	64. 4	61.5	55. 0	46.0	35.3	4, 382	A
	89年第4季	89. 12. 21	61. 2	62. 7	60.4	59. 9	60.6	58. 2	2, 790	A A
	90年第1季 90年第2季	90. 03. 22	54. 9 62. 2	61. 0 63. 7	55. 1 60. 5	52. 9 53. 4	37. 3 39. 9	32. 4	1, 114	A
	90年第3季	90. 09. 13	56. 7	70. 0	57. 7	52. 3	37. 0	31.3	822	A
	90年第4季	90. 12. 13	58. 7	66. 1	61.4	58. 7	40.3	40.9	609	A
	91年第1季	91. 03. 14	68. 4	68. 9	62. 8	64. 3	34. 3	31.0	745	A
	91年第2季	91. 06. 13	61. 6	58. 5	51.1	53. 3	34. 1	31.8	582	A
五入	91年第3季	91. 09. 12	54. 3	54. 7	47. 6	47. 2	31.8	30.0	534	A
	91年第4季	91. 12. 11	55. 4	61.4	51. 9	48. 1	33. 0	31.4	385	A
條 管	92年第1季	92. 03. 12	55. 8	57. 0	48. 7	46. 9	30.0	30.0	398	A
	92年第2季	92. 06. 12	59.3	61.5	58. 4	53. 3	30.0	30.0	429	A
港制	92年第3季	92.09.06	50.5	53. 7	49.5	49.3	30.4	30.0	530	A
	92年第4季	92. 12. 10	63.8	67.4	59. 7	55. 2	33. 4	32. 2	330	A
出站	93年第1季	93. 03. 11	53.4	52. 4	44.0	45.3	30.0	30.0	397	A
	93年第2季	93.06.24	58.6	63.1	56.6	54.0	39. 2	30.4	744	A
	93年第3季	93. 09. 17	51.4	55. 1	49. 4	46.7	30.7	30.0	460	A
	93年第4季	93. 12. 15	52. 2	54. 5	50.1	47.5	30.0	30.0	319	A
	94年第1季	94. 03. 24	61.1	69.8	60.2	61.7	34.6	30.9	533	A
	94年第2季	94. 06. 23	56.5	60. 9	55. 6	55. 2	32.9	30.9	335	A
	94年第3季	94. 09. 25	48.6	52. 3	43. 3	41.9	32. 2	31.1	631	A
	94年第4季	94. 12. 24	53. 1	52. 3	46. 0	45. 4	32. 1	31.7	357	A
	95年第1季	95. 03. 23	47. 8	52.6	43. 1	45. 2	30.1	30.0	269	A
	95年第2季 95年第3季	95. 06. 14 95. 08. 23	52. 6 48. 3	51. 6 54. 8	42. 7 49. 7	45. 4 43. 5	32. 9 33. 2	30. 9 32. 2	318 427	A A
	95年第4季	95. 12. 06	61.1	63. 4	60.6	58. 8	34. 9	34. 9	675	A
	96年第1季	96. 03. 13	48. 8	53. 2	50.1	48. 1	32. 8	31. 7	364	A
	96年第2季	96. 05. 26	50. 9	53. 7	51. 2	45. 0	35. 3	30.6	362	A
	96年第3季	96. 08. 27	45. 4	51.4	44. 7	44. 3	34.1	32.6	598	A
	96年第4季	96.11.16	51.6	52. 8	44. 7	50.6	31.6	30.1	381	A
	97年第1季	97. 02. 26	64. 2	63.3	65.5	65.8	30.5	30.0	395	A
	97年第2季	97. 05. 15	47. 4	55. 5	48. 1	45.3	33.4	30.2	377	A
	97年第3季	97. 08. 22	58. 0	61.6	57. 4	57. 7	31.6	30.0	476	A
	97年第4季	97. 12. 10	50.4	57. 7	48. 0	44. 0	39.6	33. 9	381	A
	98年第1季	98. 02. 06	49.8	54. 9	48. 2	44. 7	30.3	30.2	271	A
	98年第2季	98. 06. 04	61.3	62. 8	55. 2	55. 1	38.6	30.0	353	A
	98年第3季	98. 09. 10	51.7	55. 6	59. 1	56. 2	31.8	30.0	345	A
	98年第4季	98. 11. 30	60.3	63. 8	60.1	57. 9	39.5	31.6	381	A
	99年第1季	99. 03. 03~04	_	54. 9	48. 1	49. 1	48. 2	42.0	318	A
	99年第2季	99. 05. 06~07 99. 08. 11~12		55. 5 60. 2	49. 4 47. 2	48. 7 62. 9	49. 6 37. 2	43. 2 30. 0	356 319	Α Δ
	99年第3季	99. 08. 11~12	_	62. 7	56.0	47. 5	34.6	30. 4	349	A A
	100年第1季	100. 03. 07~08	_	55. 2	48. 7	48. 9	34. 3	30. 3	314	A
	100年第1子	100. 05. 08~09	_	55. 5	58. 0	52. 0	32. 9	30.0	331	A
	100年第3季	100. 08. 27~28	_	54. 9	57. 6	46.5	30.0	30.0	346	A
	100年第4季	100.11.13~14	_	64. 7	60.3	59. 2	41.7	38. 5	344	A
	101年第1季	101.02.27~28	_	61.1	56.1	58. 2	34. 1	33. 1	340	A
	101年第2季	101. 05. 12~13	_	58. 7	48. 7	48. 2	30.2	30.0	294	A
	101年第3季	101. 08. 14~15	_	57. 0	49. 4	49. 2	30.0	30.0	346	A
	101年第4季	101.12.04~05	_	56.8	63. 5	51.7	36.6	37. 3	325	A
		質標準	70.0	74. 0	70.0	67. 0	65.0	60.0		
	、噪音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 日公告「環境音量標準」, 99 年 1 月 21 日後為環境部 99 年 1 月 21 日公告「環境音量標準」。 、振動環境品質標準為參考日本東京都公害振動規制基準值。									

^{1、}噪音環境品質標準99年1月21日前為環境部85年1月312、振動環境品質標準為參考日本東京都公客振動規制基準值。
4、 "一"表示表設置測站。
5、 "一一"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 11)

ľ		0.1.2-1		単近へ			人人型			WN D 10 7X	(模 11)
			監測項目		_	dB(A))		-	(dB)	b /	交通
監治	財站	测定時間		L _#	Lq	Lut	Lat	L _{rq}	Lva	交通量(PCU/日)	尖峰小將服務水準等級
\vdash	\vdash	102年第1季	102. 02. 16-17	_	58. 8	57. 3	52. 9	33. 8	30. 4	427	A
\vdash	Щ	102年第2季	102. 05. 17-18	_	59. 6	58. 6	59.1	42.6	38.8	468	A
\vdash	\vdash	102年第3季	102. 09. 11-12	_	59. 1	57. 5	59. 0	40. 2	35. 2	381	A
L		102年第4季	102.11.12-13	_	58. 9	57. 8	59. 3	31.0	30.0	372	A
\vdash	Щ	103年第1季	103, 03, 09-10	_	60. 3	55. 6	49.6	40.3	36. 0	480	A
L	Ш	103年第2季	103. 05. 23-24	_	60. 8	55. 6	49.1	39. 2	36. 6	302	A
L	Щ	103年第3季	103. 08. 28-29	_	53. 2	48. 6	47.8	30.0	30.0	307	A
L	Щ	103年第4季	103. 11. 17-18	_	63. 1	61.3	66. 4	31.9	33. 9	314	A
L		104年第1季	104. 03. 20-21	_	56. 7	50. 5	55. 8	33. 6	34. 6	339	A
五	٨	104年第2季	104. 06. 29-30	_	48. 3	47. 3	43.0	30.0	30.0	319	A
L	Ш	104年第3季	104. 08. 30-31	_	56. 2	48. 2	48.0	30.0	30.0	397	A
條	眷	104年第4季	104. 10. 26-27	_	57. 9	45. 4	44. 9	30.0	30.0	321	A
L	Ш	105年第1季	105. 01. 26-27	_	52. 9	45. 4	46.8	30.0	30.0	264	A
港	øj	105年第2季	105. 04. 25-26	_	52. 4	54. 7	46.0	30.0	30.0	211	A
L		105年第3季	105. 08. 27-28	_	58. 5	52. 7	53. 2	37. 9	38. 9	400	A
出	站	105年第4季	105. 10. 10~11	_	57. 6	59. 0	53.6	35. 5	32.7	576	A
L		106年第1季	106, 03, 20-21	_	56. 1	46. 4	45. 9	30.0	30.0	349	A
		106年第2季	106. 06. 08-09	_	62. 4	51.7	45. 2	30.0	30.0	357	A
Ĺ		106年第3季	106. 07. 08-09	_	55. 6	65. 3	48.5	30.0	30.1	258	A
		106年第4季	106. 10. 07-08	_	54. 7	50. 5	53.1	32. 5	32. 3	489	A
		107年第1季	107. 03. 04-05	_	67. 5	65. 0	67.8*	30.1	30.0	233	A
		107年第2季	107. 03. 04-05	_	54. 4	53. 7	47.2	31.8	30.0	219	A
		107年第3章	107. 03. 04-05	_	52. 3	47. 5	52.8	30. 2	30.0	196	A
⊢	\vdash	107年第4季 108年第1季	107, 10, 25~26 108, 01, 28~29	_	58. 8 51. 9	44. 4 56. 5	45. 9 49. 8	30. 8 30. 0	30. 0 30. 0	162 128	A A
		108年第2季	108, 04, 29-30	_	56, 5	51.6	47.2	30.0	30.0	118	Å
\vdash	\vdash	108年第3季		_	57. 2	52. 8	52. 0	30. 2	30.0	102	A
\vdash	\vdash	108年第4季 109年第1季	108. 10. 28-29	_	58. 3 58. 1	51. 0 49. 6	49. 2 48. 4	38, 3 54, 9	30. 0 30. 0	82 77	A A
		109年第2季		_	61. 1	44. 8	45. 8	30. 0	30.0	73	A
		109年第3季	109. 07. 17-18	_	60.7	58. 4	59. 9	30.0	30.0	100	A
L		109年第4季		_	60. 2	60.7	54. 2	39.0	33. 9	87	A
⊢	Н	110年第1季 110年第2季	110. 1. 16~17 110. 04. 17~18	_	72. 7 77. 0*	61. 7 60. 6	69. 0* 55. 6	31. 5 41. 8	30. 2 30. 1	963 925	A A
		110年第3季	110.07.16~17	-	64. 0	62. 6	55. 5	37. 3	30.8	2, 916	A
⊢	\vdash		110, 10, 22-23	_	59. 7 56. 9	51. 7 46. 3	48. 1 44. 2	32, 3 32, 6	30. 0 30. 0	2, 798	A.
⊢	\vdash	111年第1季 111年第2季	111. 1. 24-25 111. 4. 1-2	_	56. 9	46. 3	44. 2	35. 2	30. 9	2, 714 2, 750	A A
		111年第3季	111. 7. 16-17	-	57. 5	46. 2	54. 2	31.5	31.1	2,517	Ā
L		111年第4季	111. 10. 24-25	-	63. 4	57. 3	53.1	30.6	30. 3	2, 608	A
L	Ш	112年第1季	112.01.10-11	_	57. 5	46. 5	54. 2	30.8	30.0	2, 278	A
L		112年第2季	112.04.01-02	_	55. 8	53. 5	53.6	30.0	30.0	2, 580	A
		112年第3季	112. 08. 31- 09. 01	_	55. 0	54. 3	45.0	30.0	30.0	2, 427	A
Г		112年第4季	112. 12. 14-15	_	65. 1	54. 3	53. 5	30.0	30.0	2, 258	A
Г		113年第1季	113. 03. 05-06	_	63. 4	42. 0	45.8	30.0	30.0	2, 231	A
Г	П	113年第2季	113. 05. 30-31	_	55. 1	46. 1	48.8	30.0	30.0	2, 192	A
	П	113年第3季	113. 09. 27-28	_	54. 2	52. 0	49. 4	30.3	30.0	2, 250	A
Г	П	113年第4季	113, 12, 20-21	_	52. 7	42. 9	45.1	30.3	30.0	2, 328	A
Г	П	114年第1季	114. 03. 01-02	_	54. 7	47. 2	48. 3	30.0	30.0	2, 210	A
Г	\vdash	114年第2季	114. 06. 01-02	_	55, 6	47. 2	54. 9	30. 0	30. 0	2, 191	A
┢	Н	114年第3季	114. 06. 01-02	_	52, 7	51. 3	47. 8	30. 0	30.0	2, 288	A
Н	Н		6質標準	70.0	74. 0	70.0	67. 0	65. 0	60.0		
1 、 1	集音 :									99 年 1 月 21 日 公 告	I 環境音量標準」。

^{1、}噪音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 日公告「環境音量標準」, 99 年 1 月 21 日後為環境部 99 年 1 月 21 日公告「環境音量標準」。 2、振動環境品質標準為參考日本東京都公客振動規制基準值。 3、 "*"表示是故環境品質標準。 4、 "—"表示無環境品質標準。 5、 "—"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 12)

7	J.1.2-1		単ルス			人人心			<u> </u>	
監測站	測定時間	監測項目	L _¥	噪音(c L _B	L _®	L	振動 L _v _B	(dB) L _{v夜}	交通量(PCU/日)	交通 尖峰小時服務水準等級
302.04.0	87年第3季	87. 10. 28	66.3	68. 2	64.8	60.5	34.0	30.1	5, 239	В
	87年第4季	87. 12. 24	66.5	68.5	64.1	61.6	31.5	30.0	7, 631	В
	88年第1季	88. 03. 25	64.4	72. 3	70.0	67.1*	37.4	31.3	8, 730	D
	88年第2季	88.06.24	68.0	69.7	65. 5	63.6	36.1	30.5	5, 657	В
	88年第3季	88. 09. 16	72. 9*	73.6	69.0	65.7	34.1	37.4	5, 319	A
	88年第4季	88. 12. 16	60.6	67. 4	62.8	58.8	35.7	30.2	6, 008	В
	89年第1季	89. 03. 16	56.1	67. 7	59. 9	55. 7	34.9	31.5	4, 584	В
	89年第2季	89. 06. 22	70.3*	69.7	64.7	63.5	37. 8	31.2	4, 934	A
	89年第3季	89. 09. 21	70.9*	70.4	66.6	63.6	35.1	31.9	6, 246	В
	89年第4季	89. 12. 21	72.1*	72.6	68. 4	69.9*	39. 2	31.0	5, 391	В
	90年第1季	90. 03. 22	65.5	67.5	64. 9	58.4	36.2	30.0	6, 798	В
華	90年第2季	90.06.14	66.5	69.6	56.8	55. 4	35. 2	30.9	4, 452	A
	90年第3季	90.09.13	79. 9*	79.7*	73.5*	70.9*	41.5	34.0	4, 687	A
	90年第4季	90.12.13	72. 3*	72. 3	65. 6	63. 9	39.8	36.5	4, 786	A
	91年第1季	91.03.14	69. 2	64. 2	58. 1	58. 9	38. 9	33. 1	4, 966	A
	91年第2季	91.06.13	67.0	67.7	63.8	59.0	39.3	33. 7	5, 163	A
陽	91年第3季	91.09.12	65.8	64. 5	60.1	58.3	37.6	32.2	5, 353	A
	91年第4季	91.12.11	-	_	-	_	_	-	5, 156	A
	92年第1季	92. 03. 12	-	-	-	-	-	-	0	A
	92年第2季	92.06.12	-	-	-	_	-	-	4, 415	A
	92年第3季	92. 09. 06	-	-	-	_	-	-	4, 382	A
府	92年第4季	92. 12. 10	-	-	-	-	-	-	5, 273	В
	93年第1季	93. 03. 11	_	_	-	_	_	-	5, 986	В
	93年第2季	93.06.24	-	-	-	-	-	-	6, 117	В
	93年第3季	93. 09. 17	-	-	-	-	-	-	3, 325	A
	93年第4季	93. 12. 15	-	-	ı	-	1	-	3, 401	A
	94年第1季	94. 03. 24	-	-	=	-	-	-	3, 821	A
	94年第2季	94.06.23	-	-	=	-	-	-	5, 581	В
	94年第3季	94.09.26	-	-	-	-	-	-	5, 076	В
	94年第4季	94. 12. 24	_	_	-	_	_	-	5, 453	В
	95年第1季	95. 03. 23	-	-	Ī	_	Î	-	5, 224	В
	95年第2季	95.06.14	-	-	Ī	_	Î	-	5, 282	A
	95年第3季	95. 08. 24	-	_	1	_	1	-	5, 331	В
	95年第4季	95.12.07	-	-	-	-	-	_	4, 901	A
	96年第1季	96.03.13	_	-	-	-	_	_	5, 187	A
	96年第2季	96.05.26	-	-	-	_	_	-	4, 900	A
	96年第3季	96. 08. 27	_	-	-	-	-	-	4, 224	A
	96年第4季	96.11.16	-	-	-	_	-	-	4, 686	A
	97年第1季	97. 02. 26	-	-	-	-	-	-	4, 070	A
	97年第2季	97. 05. 17	_	_	_	_	_	_	4, 705	A
	97年第3季	97. 08. 22		-	-		-	-	4, 136	A
	97年第4季	97. 12. 10	_	-	-	-	-	-	3, 903	A
	98年第1季	98. 02. 06	_	-	_	-	_	-	3, 612	A
	98年第2季	98. 06. 04	_	-	_	_	_	-	3, 705	A
	98年第3季	98. 09. 10	_	_	_	_	_	_	3, 716	A
	98年第4季	98.11.30	_	_	_	_	_	_	4, 219	A
	99年第1季	99. 03. 03~04		-	_	_	-	_	4, 080	A
	99年第2季	99. 05. 05~06	_	-	_	-	_	_	4, 029	A
	99年第3季	99. 08. 11~12	_	-	_	_	_	-	4, 140	A
	99年第4季	99. 10. 08~09	_		-		_	_	4, 080	A
	100年第1季	100.03.07~08		-	_	_	_	-	4, 150	A
	100年第2季	100.05.09~10	=	_	_	_	_	_	4, 306	A
	100年第3季	100. 08. 30~31	=	_	_	_	_	_	4, 197	A
	100年第4季	100. 11. 14~15	=	_	_	_	_	_	4, 340	A
	101年第1季	101. 02. 28~29	_	_	_	_	_	_	4, 531	A
	101年第2季	101. 05. 12~13	_	-	_	_	_	_	3, 875	A
	101年第3季	101. 08. 14~15	_	-	_	_	_	-	4, 499	A
	101年第4季	101.12.06~07	70.0	74.0	70.0	- 67.0	-		4, 293	A
1、過辛		4 質標準 99 年 1 月 21 日 i	70.0 前為環境部 8 *	74.0	70.0	67.0	65.0 9年1月21日	60.0	99年1月21日公告	· · · · · · · · · · · · · · · ·
1、噪音環境品質標準 99 年 1 月 21 日前為環境部 85 年 1 月 31 日公告「環境音量標準」,99 年 1 月 21 日後為環境部 99 年 1 月 21 日公告「環境音量標準」。 2、振動環境品質標準為參考日本東京都公案振動規制基準值。										

 ^{1、}噪音環境品質標準99年1月21日前為環境部85年1月312、振動環境品質標準為參考日本東京都公客振動規制基準值。
 3、"。"表示超出環境品質標準。
 4、"一"表示未設置測站。
 5、"一一"表示無環境品質標準。

表 3.1.2-1 本計畫歷次噪音、振動及交通量監測結果綜合比較表(續 13)

		監測項目	<u> </u>		dB(A))			(dB)	•	交通
Mit and All	W 40 40 40	E 61-51 H	,						de 18 SE/DOUGE >	
監測站			L#	Le	Lee	La	Lrq	Lva	交通量(PCU/日)	尖峰小時服務水準等級
\perp	102年第1季	102. 02. 16-17	_	_	_	_	_	_	3, 798	A
	102年第2季	102. 05. 17~18	_	-	_	-	-	_	3, 400	A
	102年第3季	102.09.12-13	_	_	-	-	_	-	3, 406	A
	102年第4季	102.11.12-13	_	_	_	_	_	-	3, 358	A
	103年第1季	103. 03. 12-13	_	_	_	_	_	_	3, 355	A
\vdash	103年第2季	103. 05. 24-25	_	_	_	_	_	_	3, 184	A
	103年第3季	103, 08, 28-29	_	_	_	_	_	_	3, 199	
\vdash										A
	103年第4季	103.11.18-19	-	-	_	-	-	_	3, 475	A
華	104年第1季	104. 03. 21-22	_	-	_	_	-	-	3, 059	A
\Box	104年第2季	104. 6. 29-30	_	-	_	_	-	_	3, 509	A
	104年第3季	104. 8. 29-30	_	_	-	-	_	-	2, 978	A
	104年第4季	104. 10. 26-27	_	_	-	_	_	-	3, 360	A
	105年第1季	105. 01. 26-27	_	_	_	_	_	_	3, 631	A
陽	105年第2季	105, 04, 25-26	_	_	_	_	_	_	3, 247	A
	105年第3季	105, 08, 25-26	_	_	_	_	_	_	3, 105	A
+										
\vdash	105年第4季	105. 10. 10-11	_	_	_	_	_	_	3, 107	A
	106年第1季	106. 03. 20-21	-	-	_	-	-	-	3, 361	A
	106年第2季	106. 06. 08-09	_	-	_	_	-	_	3, 451	A
府	106年第3季	106.07.08~09	_	_	_	_	_	_	3, 382	A
	106年第4季	106. 10. 07-08	_	_	-	_	_	-	3, 494	A
	107年第1季	107. 03. 04-05	_	_	-	_	_	-	3, 382	A
	107年第2季	107. 03. 04-05	_	_	_	_	_	-	3, 418	A
	107年第3季	107. 03. 04-05	_	-	_	-	_	-	3, 231	A
	107年第4季	107, 10, 25~26	-	-	-	_	_	-	3, 490	A
\vdash	108年第1季 108年第2季	108, 01, 28~29 108, 04, 29~30	_	_	_	_	_	_	3, 712 3, 470	A A
\vdash	108年第3季	108, 08, 29-30	_	_	_	_	_	_	3, 122	Ä
	108年第4季	108. 10. 28-29	_	_	-	_	_	-	2, 980	A
\vdash	109年第1季	109.01.13-14	_	_	_	_	_	_	2, 937	A
	109年第2季 109年第3季	109. 04. 29-30	_	_	_		_	_	2, 713 2, 579	B
	109年第4季		_	_	-	_	_	-	2, 556	Å
	110年第1季	110. 1. 16~17	-	-	_	_	-	_	2, 632	В
\vdash	110年第2季	110.04.17-18	_	_	_		_	_	3, 132	A
\vdash	110年第3季 110年第4季	110, 07, 16~17 110, 10, 22~23	_	_			_		2, 881 2, 874	A A
	111年第1季	111. 1. 24-25	_	_	_	_	_	_	2, 244	Å
\Box	111年第2季	111. 4. 1-2	_	_	-	_	_	-	2, 327	В
\vdash	111年第3季 111年第4季	111, 7, 16-17 111, 10, 24-25	_	_	_	_	_	_	2, 438 2, 416	A
\vdash	112年第1章	112. 01. 10-11	_	_	_	_	_	_	2, 283	Ä
	112年第2季	112, 04, 01-02	_	-	-	-	_	-	2, 362	A
	112年第3季	112. 08. 31- 09. 01	_	_	_	_	_	-	2, 341	A
\vdash	112年第4季	112. 12. 14-15	_	_	_	_	_	_	2, 225	A
	113年第1季	113, 03, 05-06	_	_	-	_	_	-	2, 150	A
\vdash	113年第2季		_	_	_	_	_	_	2, 075	A
\vdash		113, 09, 27-28 113, 12, 20-21	_	_	_	_	_	_	2, 053 2, 065	A A
		114, 03, 01-02	_	_	_	_	_	_	2,013	Å
		114.06.01-02	_	_	-	_	_	-	1. 948	A
\vdash	114年第3季	114, 08, 23-24 品質標準	70.0	74.0	70.0	67. 0	65.0	60.0	2, 071	A
\perp	巫境 。	9 頁係件	70.0	74.0	70.0	07.0	00.0	DU, U		

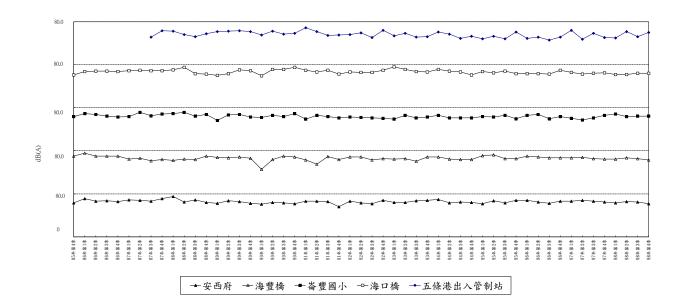


圖 3.1.2-1 本計畫歷次噪音 Lv ₹監測結果分析圖

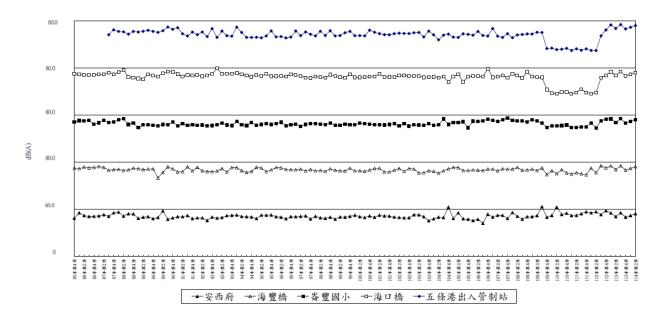


圖 3.1.2-2 本計畫歷次噪音 Lv □監測結果分析圖

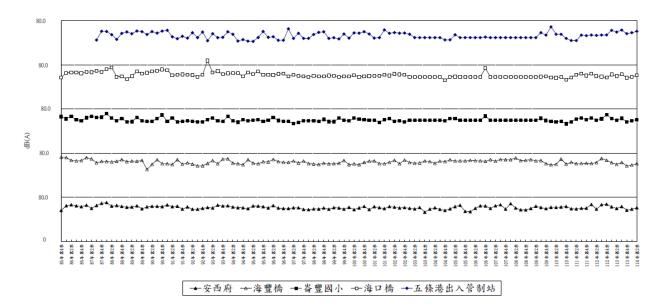


圖 3.1.2-3 本計畫歷次噪音 Lv 晚監測結果分析圖

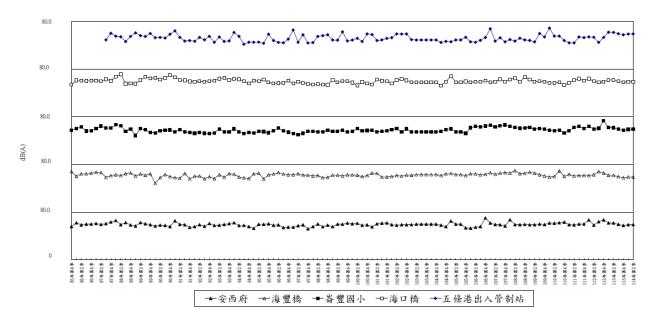


圖 3.1.2-4 本計畫歷次噪音 Lv & 監測結果分析圖

3.1.3 振動

歷次監測結果列於表 3.1.2-1,如圖 3.1.3-1~圖 3.1.3-2 所示。歷次測值 皆低於日本東京都公害振動規制基準值,並無明顯惡化或異常現象。

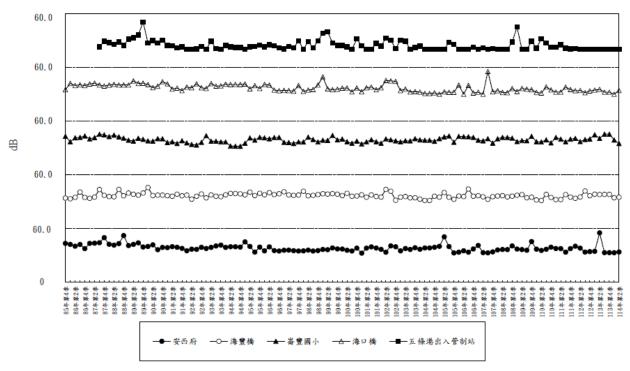


圖 3.1.3-1 本計畫歷次振動 L_{v10 □}監測結果分析圖

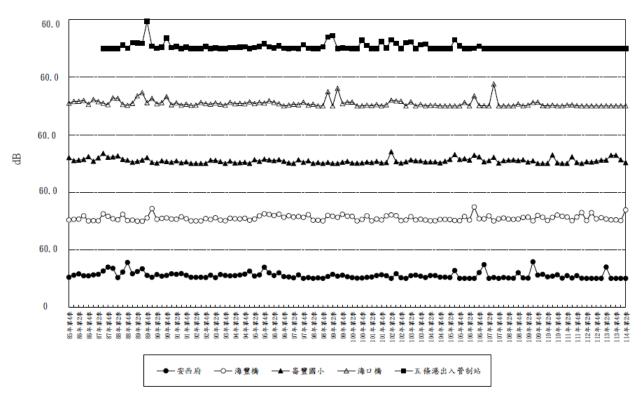


圖 3.1.3-2 本計畫歷次振動 Lv10 夜監測結果分析圖

3.1.4 交通流量

歷次監測結果列於表 3.1.2-1,並繪如圖 3.1.4-1,各測站中海豐橋及海口橋兩測站,車流量呈現穩定分佈,而崙豐國小及安西府測站之交通量變動較大,尤其於 88 年度;至於各測站尖峰小時服務水準等級為 A~C級,顯示各道路之交通服務水準良好。

此外,離島產業園區之新興及台西區尚屬施工期間,而麥寮區已進入營運期,依據環評及差異分析預測結果,離島產業園區施工及營運期間台 17省道之服務水準為 A~C級、158縣道為 A~B級,與監測結果相符。

由於麥寮區目前已進入營運期,進出麥寮區之車輛漸增,為避免麥寮區引進之貨櫃車及人員通勤對當地附近交通造成影響,台塑企業除限制大型車輛必須由砂石車專用道進出廠區外,亦鼓勵員工上、下班時多利用砂石專用道,此外並採取以下措施以改善交通:

- 一、廠區員工上下班時間分散
- 二、鼓勵員工搭乘交通車或私車共乘
- 三、上下班於重要路口指揮交通

本監測工作將密切注意麥寮區施工及營運所引起之交通流量對鄰近道路之交通影響。

另就環評報告之交通量調查值而言,本計畫區主要之聯絡道路台 17 省道之服務水準為 C 級,施工期間之交通量調查,由於台 17 省道已拓寬,台 17 省道之服務水準介於 A~C 級之間,顯示本工程施工未使主要之聯絡道路台 17 省道服務水準惡化。

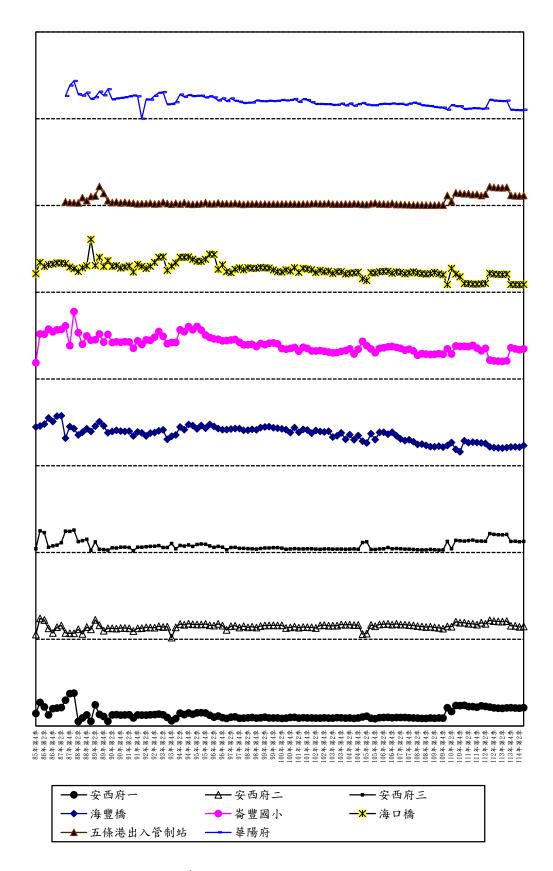


圖 3.1.4-1 本計畫歷次交通量監測結果分析圖

3.1.5 陸域生態

一、陸域動物生態

(一) 哺乳類

歷年秋季監測記錄到的哺乳類動物累計有 7 科 16 種,各次秋季監測出現的種數介於 3 至 11 種之間,平均約為 6 種,數量則是 50 隻。本年度秋季監測記錄到的哺乳類動物數量有 46 隻,略低於歷年同期平均值,減少最多的物種為東亞家蝠。

(二) 鳥類

歷次秋季監測累計已有 46 科 120 種鳥類的紀錄,單次秋季監測可記錄到的物種數介於 36 至 55 種之間,平均約為 46 種 1472 隻次。本季監測記錄到的鳥種數有 37 種 1115 隻次,種數及隻次數都明顯低於平均值;種數是近 10 年最少,數量則是次低。

雲林沿海地區的鳥類組成有 61.8%是屬於冬候鳥或過境鳥,因此秋季鳥類過境期間出現的鳥種數通常會比夏季增加。本次監測記錄到的鳥類種類及數量都偏低。與過去的資料相比,本季遷移性鳥類及留鳥種類都有減少的現象,主要原因應是監測期間的氣候還未明顯轉換為秋季,南風仍強,因此僅有少量的冬候鳥或秋季過境鳥出現。加上氣候炎熱,日間調查時有不少水域鳥類或草原性鳥類蛰伏不出,因而被發現的機會減少。

本監測在 107 年夏季首度在台子記錄到灰頭椋鳥。本種是籠中逸鳥,在臺灣平地已有繁殖族群。後續於海豐、五條港、三條崙、四湖及台西樣區亦陸續出現零星紀錄。今年春季在新吉首次記錄後,至此所有監測樣區均已確認有灰頭椋鳥出現,顯示其族群已擴散至雲林沿岸的濱海及河口地區,且在近一年數量明顯增加。儘管目前尚未觀察到灰頭椋鳥對當地鳥類群聚的影響,未來仍應持續關注其數量與分布變化,以評估其對原生鳥類可能造成的潛在競爭。112 年秋季監測在四湖首度記錄到另一個外來種-亞洲輝椋鳥。後續於 113 年秋季在四湖再度被記錄到,本季則是在台西農耕地記錄到 8 隻。至目前為止本種在監測範圍內僅在秋季出現,推測可能數量還不多,且在前述發現地點還沒有穩定的族群。

(三) 爬行類

歷次秋季監測曾記錄到的爬行類動物有 8 科 18 種,單次監測平均約可記錄到 6 種 247 隻動物。本季監測期間高溫,記錄到的爬行類動物有 9 種 175 隻,種數高於平均,但數量明顯較少,以壁虎科動物減少最多。

(四) 兩棲類

歷年秋季共曾記錄過 5 科 6 種,平均每次秋季監測可以記錄到 4-5 種 69 隻次。

自 112 年起,監測範圍內兩棲類的記錄數量已出現下降趨勢。 113 年冬季至 114 年春季期間,降雨量較歷年同期明顯偏少,且至 3 月間仍有多次冷氣團影響臺灣,造成乾旱與低溫期延長,導致今年 春季監測記錄到的兩棲類數量是歷年同季最低。夏季監測前,全臺發生數次大雨,當時記錄到的兩棲類數量較春季有所回升,惟仍低於歷年夏季平均值。之後於7月間多個颱風經過或侵台持續帶來豪雨,使監測範圍中各類環境持續有穩定的積水一直到9月。今年秋季監測記錄到的兩棲類數量是歷年秋季次多,且有相當高的比例是今年新生的小個體,顯示長期穩定的積水環境是維繫本地兩棲類生態的重要條件。

自從 105 年首度在監測樣區內發現外來種-斑腿樹蛙後,後續各年度監測皆有其紀錄。由於沿海地區的積水環境常含有一定鹽分,可能對斑腿樹蛙的擴散構成限制,最初多見於新吉樣區,之後續於五條港及四湖樣區觀察到少量個體;目前僅剩海豐及台子這處穩區還沒有斑腿樹蛙的紀錄。113 年夏季首度於三條崙樣區。認該處已經成為斑腿樹蛙的穩定繁殖水域。由於蓄水池是穩定的人工淡水環境,未來斑腿樹蛙族群在當地的擴張情況須持續留意。由於沿海人造林內及荒地的淡水環境非常有限,因此斑腿樹蛙的繁殖水域很容易確認;可持續監測此類環境並定期移除其卵泡便可控制局部區域的數量。

(五) 蝶類

歷年秋季監測共記錄到蝶類 5 科 65 種,平均每次調查可記錄 12 種 256 隻次。本季記錄到 11 種 140 隻次,數量明顯低於歷年同期平均值,減少最多的物種為黃蝶及迷你小灰蝶。

自 110 年至 112 年間,監測範圍內多處樣區持續受到除草劑施用的影響,導致自 110 年中開始蝶類數量顯著下降,此下降趨勢持續至 113 年上半年。由於蝶類的幼蟲與成蟲皆與植物資源密切相關,除草劑的施用不僅導致植物死亡,進一步影響蝶類的食物來源可能促使少數先驅植物在植被恢復過程中成為優勢種,導致植被多樣性降低,對蝶類物種組成產生長期影響。在本季監測之前,除了海豐及台子之外,其餘樣區均可以確認在本季曾被噴灑過除草劑,可能是監測時調查到的蝶類數量嚴重偏少的主因。即使如此此,可能受惠於 7 月至 8 月間降兩較多而短暫促進地被植物多樣性的提升,本季監測新增了雲紋粉蝶及白尾小灰蝶的新紀錄,這兩種蝶類在臺灣雖然不是稀有種,但以往可能受限於當地的植被條件而沒有出現。此外,闊葉林的常見蝶類-大鳳蝶,在新吉有 1 隻的紀錄,這是執行本監測以來的第 4 次記錄。

二、陸域植物生態

(一) 新吉濁水溪口魚塭樣區(Plot I)

上季(114夏)所調查的植被狀況,優勢種植物大黍,而本季(114秋)樣區植物組成優勢物種為大黍,本季與上季相同植物為三角葉西番蓮、大花咸豐草、大黍、小花蔓澤蘭、巴拉草、血桐、落葵、葎草、構樹、蓖麻、銀合歡及雞屎藤,本季增加五蕊油柑、烏斂莓,減少紅瓜及龍葵。本季與去年同季(113秋)相較,相同植物為大花咸豐草、大黍、小花蔓澤蘭、血桐、烏斂莓、葎草、構樹、蓖麻及銀合歡,增加五蕊油柑、巴拉草、雞屎藤及落葵,減少雞母珠、小葉桑、灰綠藜、苦楝、野莧及龍葵。

(二) 台西三姓寮樣區(Plot III)

上季(114 秋)與上季(114 夏)相同植物為三角葉西番蓮、月橘、木麻黃、扛香藤、血桐、林投、馬櫻丹、榕樹、構樹、銀合歡、數珠珊瑚、龍眼及番荔枝,本季增加木瓜及槭葉牽牛,沒有減少植物。本季與去年同季(113 秋)相較,相同植物為月橘、木麻黃、血桐、林投、馬櫻丹、榕樹、構樹、銀合歡、數珠珊瑚、龍眼及番荔枝,增加木瓜、槭葉牽牛及扛香藤,減少潺槁樹。

(三) 台西五塊厝樣區(Plot IV)

本季(114 秋)與上季(114 夏)相同植物為三角葉西番蓮、大黍、小葉桑、月橘、血桐、苦楝、馬櫻丹、野苦瓜、榕樹、構樹、銀合歡、數珠珊瑚、龍眼、龍葵、雞母珠、羅漢松、番荔枝及鐵牛入石,本季增加臺灣海桐及雞屎藤,減少大萼旋花及銀葉樹植物。本季與去年同季(113 秋)相較,相同植物為三角葉西番蓮、大黍、小葉桑、月橘、血桐、苦楝、馬櫻丹、榕樹、構樹、臺灣海桐、銀合歡、數珠珊瑚、龍眼、雞母珠、羅漢松、番荔枝及鐵牛入石,增加雞屎藤,減少野苦瓜及龍葵。

(四)林厝寮木麻黄造林地樣區(Plot V)

本季(114 秋)與上季(114 夏)相同植物為三角葉西番蓮、大花咸豐草、大黍、木麻黃、朴樹、林投、苦楝、猩猩草、構樹、臺灣海棗、銀合歡、銀葉樹、潺槁樹及樹青,本季增加月橘、木鱉果、馬櫻丹、五節芒及五節芒,減少臺灣海桐及日日春植物。本季與去年同季(113 秋)相較,相同植物為三角葉西番蓮、大花咸豐草、大黍、月橘、木麻黃、朴樹、林投、苦楝、猩猩草、構樹、臺灣海棗、銀合

歡、銀葉樹、潺槁樹及樹青,增加木鱉果、五節芒、槭葉牽牛及馬櫻丹,減少臺灣海桐、日日春、長柄菊、構樹及銳葉牽牛。

(五) 林厝寮混合造林地樣區(Plot VI)

本季(114 秋)與上季(114 夏)相同植物為大黍、大葉合歡、小葉厚殼樹、山枇杷、月橘、木瓜、木麻黃、石栗、朴樹、春不老、枯里珍、柑橘、紅瓜、馬櫻丹、黃槿、雷公根、榕樹、瑪瑙珠、臺灣海桐、臺灣海棗、臺灣樂樹、銀合歡、槭葉牽牛、潺槁樹、魯花樹、叢立孔雀椰子、雞屎藤、羅漢松及欖仁,本季增加白樹仔、茄苳、三角葉西番蓮、大葉山欖及小花蔓澤蘭,減少苦楝及龍葵植物。本季與去年同季(113 秋)相較,相同植物為大黍、大葉合歡、小葉厚殼樹、巴西胡椒木、月橘、木麻黃、白樹仔、石栗、朴樹、春不老、枯里珍、柑橘、紅瓜、馬櫻丹、黃槿、榕樹、瑪瑙珠、臺灣海桐、臺灣海棗、臺灣樂樹、銀合歡、槭葉牽牛、潺稿樹、魯花樹、叢立孔雀椰子、雞屎藤、羅漢松、欖仁及茄苳,本季增加木瓜、三角葉西番蓮、大葉山欖及小花蔓澤蘭,減少樹青、龍葵、血桐、紅仔珠、構樹、福木及臺灣山枇杷。

(六) 台塑木麻黄造林地樣區(Plot VIII)

本季(114 秋)與上季(114 夏)相同植物為三角葉西番蓮、大黍、小毛蕨、巴西胡椒木、木麻黄、毛西番蓮、血桐、春不老、瑪瑙珠、臺灣海桐及臺灣海棗,本季增加蘆葦及小花蔓澤蘭,減少龍葵、糯米團、大花咸豐草及苦苣菜植物。本季與去年同季(113 秋)相較,相同植物為三角葉西番蓮、大黍、小毛蕨、巴西胡椒木、木麻黄、毛西番蓮、血桐、春不老、瑪瑙珠、臺灣海桐、臺灣海棗及蘆葦,本季增加小花蔓澤蘭,減少雞母珠及鯽魚膽。

(七) 台塑北門木麻黃混合造林地樣區(Plot IX)

本季(114 秋)與上季(114 夏)相同植物為三角葉西番蓮、大花咸豐草、大黍、小花蔓澤蘭、小葉桑、五節芒、月橘、木麻黃、血桐、臺灣海桐、密花白飯樹及黃槿,本季增加銀合歡、雞屎藤、鱗蓋鳳尾蕨、千金藤及扛香藤,減少龍葵植物。本季與去年同季(113 秋)相較,相同植物為三角葉西番蓮、大花咸豐草、大黍、小花蔓澤蘭、小葉桑、五節芒、月橘、木麻黃、血桐、臺灣海桐、密花白飯樹、黃槿及銀合歡,本季增加雞屎藤、鱗蓋鳳尾蕨、千金藤及扛香藤,減少龍葵、鱗蓋鳳尾蕨、武靴藤及馬櫻丹。

(八) 北海埔新生地樣區

本季(114 秋)與上季(114 夏)相同植物為大花咸豐草、伏生大戟、印度田菁、狗牙根、紅毛草、馬鞍藤、假葉下珠、雙花草、鯽魚膽、鹽地鼠尾栗及細葉假黃鶴菜,本季增加一枝香、烏斂莓及馬氏濱藜,減少裂葉月見草、裸花鹼蓬、毛馬齒莧及龍葵植物。本季與去年同季(113 秋)相較,相同植物為大花咸豐草、伏生大戟、印度田菁、狗牙根、馬氏濱藜、馬鞍藤、假葉下珠、雙花草及鯽魚膽,本季增加鹽地鼠尾栗、細葉假黃鶴菜、一枝香、烏斂莓及馬氏濱藜,減少龍爪茅、裸花兼蓬及毛馬齒莧。

(九) 南海埔新生地樣區

本季(114 秋)與上季(114 夏)相同植物為大花咸豐草、毛西番蓮、 長穗木、馬鞍藤及巴拉草,本季增加印度田菁水丁香、高野黍、蓮 子草及巴西胡椒木,減少加拿大蓬、帚馬蘭、苦苣菜、野茼蒿、槭 葉牽牛及龍葵植物。本季與去年同季(113 秋)相較,相同植物為大花 咸豐草、毛西番蓮及印度田菁,本季增加長穗木、馬鞍藤、巴拉草、 水丁香、高野黍、蓮子草及巴西胡椒木。

各樣區地被植物與藤本變化比較詳表 3.1.5-1。

表 3.1.5-1 地被與藤本植物豐富度變化表

新吉濁水溪口樣區										
植物名稱	巴拉草	Ī	藍葦	葎草	<u> </u>	雞屎廁	泰	番茄		
代號	H51		H3	H26		H11	••	H52		
本季	1	無紀錄		+	+		r			
上季	1		0	+		r		無紀錄		
去年同季	無紀錄	無	紀錄	+	+		無紀錄			
			台西	三姓寮	樣區					
植物名稱	林投	馬	纓丹	構樹	構樹		釋迦			
代號	S4	ŀ	H31	H18	3	H16		H4		
本季	1		+	r		r		無紀錄		
上季	2		r	無紀	錄	無紀針	綠	無紀錄		
去年同季	2		r	r		r		無紀錄		
			台西	五塊厝	樣區					
植物名稱	構樹	火力	炭母草	紅仔	珠 苦楝			落葵		
代號	H2		H1	H30)	H22		H18		
本季	r	無	紀錄	無紀錄		r		無紀錄		
上季	r	無	紀錄	無紀錄		無紀錄		無紀錄		
去年同季	r	無	紀錄	無紀錄		無紀釦	無紀錄			
		杉	木厝寮木	麻黄造	林地樣	長區				
植物名稱	林投	大花咸豐草		木麻	黄	三角葉西	番蓮	狗牙根		
代號	S4		S2	H51		Н3		H12		
本季	2		3	無紀錄		+		無紀錄		
上季	2		3	無紀錄		1		無紀錄		
去年同季	+		2	r		1		無紀錄		
			林厝寮	混合造材	地樣	品				
植物名稱	大黍		槁樹	苦楝		龍葵		馬纓丹		
代號	H17	I	H42	H7		H16		H44		
本季	r		r	無紀	錄	無紀釒	录	r		
上季	r		+	r		r		r		
去年同季	1		r	無紀	錄	r		r		
	台塑木麻黄造林地									
植物名稱	鯽魚膽		大花咸豐草		馬纓丹		馬尼拉芝			
代號	S 1		H1		Н3		H4			
本季	無紀錄		無紀錄		無紀錄		į	無紀錄		
上季	無紀錄		+		無紀錄		\$	無紀錄		
去年同季	1		無紀錄		無	無紀錄		無紀錄		

台塑北門木麻黃混合造林地											
植物名稱	血桐	三角葉西番蓮	馬纓丹	雞屎藤							
代號	S1	H1	Н3	Н7							
本季	r	+	無紀錄	r							
上季	無紀錄	1	無紀錄	無紀錄							
去年同季	r	1	r	無紀錄							
	海埔新生地北樣區										
植物名稱	野茼蒿	大花咸豐草	印度田菁	龍葵							
代號	S5	H2	Н3	H17							
本季	無紀錄	3	3	r							
上季	無紀錄	2	+	r							
去年同季	無紀錄	3	2	無紀錄							
		海埔新生地南村	 美區								
植物名稱	大黍	馬鞍藤	龍葵	臭杏							
代號	S4	H1	Н3	H10							
本季	無紀錄	+	無紀錄	無紀錄							
上季	無紀錄	+	+	無紀錄							
去年同季	無紀錄	無紀錄	無紀錄	無紀錄							

三、陸域生態歷年監測資料比較

歷年秋季各類動物的各科、種數之變化詳見表 3.1.5-2。

歷來秋季監測共發現哺乳類動物 4 科 11 種; 臭飽在各年度秋季均有出現,且是優勢種。在過去的秋季監測中,哺乳類動物在 106 年曾出現 11 種,是歷年秋季監測中,種數最多的年度。

在鳥類方面,歷來秋季最高曾記錄到 24 科 55 種。種類數最高出現在 86 年,計有 55 種出現。101 年僅有 36 種,是歷來秋季最少的一年。

爬行類動物在歷年秋季最高記錄到 6 科 10 種。爬行類在 86 年及 93 年秋季監測僅被記錄到 2 種,是歷來最少的紀錄,在 108 年及 112 年發現 10 種,是歷來秋季種數最多的一年。

迄目前為止,在雲林沿海地區所記錄到的兩棲類全為蛙類,種數僅有6種。民國86年至92年間大部分年度的秋季可發現4-5種兩棲類;民國93年後大部分年度僅能發現4種。105年度夏季增加了斑腿樹蛙,是執行監測近20年後首次有新紀錄蛙類出現。93年及104年同為秋季監測種數最少的年度。

蝶類在歷年的秋季監測最高記錄到 5 科 23 種。在 99 年及 100 年度曾記錄到 23 種是歷來最高的記錄。86 年 4 種為秋季監測種數最少的年度。

植物在 91 年曾記錄到 30 科,109 年發現 56 種為最少,分別是科數及種樹最少的監測記錄。本年度秋季記錄到 42 科 82 種,在歷年秋季監測中屬於常態。

表 3.1.5-2 陸域生態監測歷年夏季種數變化統計表

(a) 陸域動物

(C) (王·列斯) (A)																													 1
														哺	乳類														
年度	86 年	87年	-88年	89 年	90年	91年	92年	93年	94年	95 年	96年	97年	98 年	99年	100 年	101 年	102 年	103 年	104 年	105 年	106 年	107 年	108 年	109 年	110 年	111 年	112 年	113 年	114 年
科數	3	2	4	4	3	3	4	3	4	4	3	2	4	4	4	4	4	4	4	4	4	5	4	4	4	5	4	4	3
種數	4	3	6	5	5	4	5	3	6	7	5	5	4	6	7	5	4	6	5	9	11	9	8	6	7	6	4	5	6
鳥類																													
年 度	86 年	87年	-88年	89 年	90年	91年	92年	93年	94年	95 年	96年	97年	98 年	99年	100 年	101 年	102 年	103 年	104 年	105 年	106 年	107 年	108 年	109 年	110 年	111 年	112 年	113 年	114 年
科數	24	26	29	22	26	24	25	21	25	27	23	25	24	26	24	23	25	26	22	26	25	31	27	23	24	21	23	24	20
種數	55	52	54	39	51	44	50	50	46	54	46	43	43	50	50	36	46	48	45	47	46	53	47	42	41	38	42	48	37
爬行類																													
年 度	86 年	87年	-88年	89 年	90年	91年	92年	93年	94年	95 年	96年	97年	98 年	99年	100 年	101 年	102 年	103 年	104 年	105 年	106 年	107 年	108 年	109 年	110 年	111 年	112 年	113 年	114 年
科數	1	5	5	5	6	6	4	1	4	5	6	3	5	5	5	4	5	5	6	4	6	4	6	6	5	6	6	3	5
種數	2	9	6	7	8	7	5	2	5	8	8	4	7	7	7	5	7	7	8	6	7	6	10	7	7	9	10	5	7
	· · · · · · · · · · · · · · · · · · ·																												
年度	86 年	87年	-88年	89 年	90年	91年	92年	93年	94年	95 年	96年	97年	98 年	99年	100 年	101 年	102 年	103 年	104 年	105 年	106 年	107 年	108 年	109 年	110 年	111 年	112 年	113 年	114 年
科數	2	3	1	2	3	3	2	3	3	3	3	3	2	3	3	3	3	3	4	4	4	5	4	2	4	5	4	5	5
種數	3	4	2	3	4	3	2	3	3	3	3	3	2	4	3	3	3	4	4	4	5	5	4	2	5	5	5	6	5
														蚂															
年 度	86 年	87年	-88年	89 年	90年	91年	92年	93年	94年	95 年	96年	97年	98 年	99年	100 年	101 年	102 年	103 年	104 年	105 年	106 年	107 年	108 年	109 年	110 年	111 年	112 年	113 年	114 年
科數	3	3	5	5	5	5	4	3	5	5	4	4	5	5	5	5	5	5	5	5	5	4	5	3	5	4	4	5	4
種數	4	12	11	10	21	21	13	7	15	19	8	13	14	23	23	20	10	14	10	14	14	9	13	5	9	9	11	10	11

(b) 陸域植物

(0)	13		「一旦	127																									
	植物監測																												
年	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114
度	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年	年
科																						25	25	25	20	2.4	40	10	10
數	44	47	43	43	38	30	43	38	42	42	43	47	36	37	38	34	43	39	35	33	40	35	35	35	38	34	43	42	42
種																							<i>-</i> 1				70	7.	0.2
數	100	108	102	85	75	74	88	69	90	86	87	97	63	60	73	59	85	68	62	59	72	60	61	56	69	60	79	76	82
裸																						1	1	1	1	2	1	1	1
子	0	0	1	1	1	1	0	0	1	2	1	2	1	1	2	1	2	1	2	2	1	1	1	1	1	2	1	1	1
蕨																						1	1	1	0	•	2	2	
類	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	2	2	2	2
雙																													
子	76	83	79	68	61	61	74	56	74	67	74	82	52	51	62	30	61	63	53	50	63	52	54	47	56	47	63	64	67
葉																													
單																													
子	23	24	21	15	10	12	13	13	15	17	12	13	10	8	9	3	12	4	7	7	8	6	5	7	12	9	13	9	12
葉																													

四、建議事項

(一)陸域動物生態

由於雲林沿海地區的土地高度利用,閒置農地、防風林及鹽化漥地等暫無利用或不能開發的土地已成為當地野生動物取得生態資源的重要來源。有些干擾程度低的環境,像是新吉、三條崙的造精在經過長期演替之後樹冠空隙逐漸縮小,且幾年前在林下陸續種植的耐旱灌木已形成複層植被,進一步促進地表草本及灌木植物的生長,生態品質持續改善。在多年前有些以次生林為主要棲地的野生動物便已經慢慢在前述的人造林內出現。然而,於響以不養性動物人造路邊緣的地被植物偶爾被噴灑除草劑,影響以禾草類植物為食的動物。除草劑失效後,重新生長的植物多為優勢入侵種物為食的動物。除草劑失效後,重新生長的植物多為優勢入侵種物為食的動物。除草劑大黍及巴拉草,導致林緣的植被多樣性下降,並進一步縮小蜜源植物的數量。因此,建議在公有地及造林地等環境中嚴格管制除草劑的使用。

雲林沿海地區以魚塭及農地為主要的土地利用方式,此類土地雖然無法進行全面造林,但帶狀的樹籬與灌叢等仍可發揮遮蔭、緩衝風勢與水土保持的功能。不過,在四湖樣區至少有2處旱田邊緣既有的整排榕樹及南洋杉在近年陸續被砍伐,可能因農民擔心樹蔭影響作物生長所致。建議地方政府加強與農民溝通,針對樹籬對農地的益處進行教育與宣導。

雖然本季出現多次豪大雨,但台西樣區的溝渠仍持續被排入大量畜牧廢水,加上高溫影響,水質並未因大量淡水的稀釋而有明顯改善。近年台西樣區溝內持續有斑龜出現,本季雖然該處仍找到 2

隻斑龜,但比 113 年大幅減少,顯示其棲地品質已經嚴重惡化。由於監測範圍內開發密度很高,天然水域幾乎消失,現存之溝渠或是人造林內的積水窪地可說是當地水棲生物的主要棲息環境。在監測民間的土地開發及汙染,以及沿海窪地積水鹽化,處近地環境中的共產。這些窪地與溝渠即使暫時停止被排入廢汙水,因幾乎消失。這些窪地與溝渠即使暫時停止被排入廢污水積、經費中大量有機物在分解過程所形成的缺氧境仍無法讓兩人大體中大量有機物在分解過程所形成的數學上,因此亟需輔導民眾改善排放水質且長期追與外,過等極端氣候影響,積水容易快速乾涸或發生劇烈溫差變化,同樣也逐漸不適合蛙類棲息。因此,建議水泥溝的清淤工作避免在夏季前進行,使水泥溝內沉積土壤及植物保留至次年春季,可作為蛙類在高溫與乾旱期間之庇護環境,有助於穩定局部兩棲類族群。

外來種斑腿樹蛙早在民國 105 年就已經在新吉樣區內發現,但由於環境經常乾旱炎熱,加上沿海積水常帶有鹽分,因此其族群拓展速度並不快。113 年監測在三條崙試驗林的新建蓄水池內首度發現了斑腿樹蛙卵泡,且至今年仍穩定出現。值得注意的是,這類穩定的淡水水域是偏好靜止池沼蛙類的理想繁殖環境。隨著蓄水池的啟用,預期斑腿樹蛙在蓄水池周邊的族群量將會增加。建議管理單位在巡察時主動移除卵泡及成蛙;至於池內的蝌蚪可能混有其他的原生種,因辨識不易,若要移除蝌蚪,建議委請有經驗的專家或志工執行。

(二)陸域植物生態

陸域植物生態監測樣區平均分散於雲林沿海各鄉鎮,距離離島產業園區施工地點遠近各不相同。新吉濁水溪口魚塭樣區因 101 秋季樣區遭人為干擾,於 102 春季出現大幅的物種群聚改變。102 夏季物種經過消長,組成漸趨單純,部分好陽性物種僅出現一季後便消失。到了 102 年秋季樣區內大量蓖麻成株已出現凋萎的現象,透光度的增加,勢必對未來樣區內部的物種組成產生極大的影響,但受到河道清除布袋蓮的工程,蓖麻的生長區域受到工程用機具的影響,而有所干擾,不見其擴大分布的趨勢,111 年夏季樣區外側開闢渠道,促使 113 年調查此樣區處於自然演替無人干擾的狀態,114 年樣區植物更趨於穩定,周邊蓖麻的生長仍偏向開闊區域。台西三姓寮樣區周圍因為樹冠鬱閉度的關係,數珠珊瑚在倒伏榕樹所裸露的空域下,使其開花結果的情形甚佳,導致族群的擴張迅速,113 年至114 年秋季仍屬於地被優勢植物。入侵種小花蔓澤蘭的擴散也可能

影響本監測許多樣區的物種組成,監測所見已經攀附在榕樹、黃槿 及木麻黄樹幹,且已有擴散的情形;新吉、五條港及三條崙的人造 林均早已經有紅瓜入侵,對防風林緣的木麻黃生長造成影響;此外, 多處農耕地邊緣亦早已出現紅瓜分布。冬季乾旱導致紅瓜攀附於樹 上的部分枝條枯萎或葉片脫落,使地面上的藤蔓清晰可辨。建議利 用冬季期間進行人工移除,以降低處理難度並提升清除效率。台西 五塊厝樣區於本季記錄大量草本植物,但優勢物種的組成卻產生極 大改變,顯示在該樣區的向陽地帶,物種的競爭依舊十分激烈,大 黍與大花咸豐草的競爭似乎與鬱閉度相關,地被優勢植物測得到林 下大黍的適應程度比大花咸豐草高,林下地被以月橘小苗更新狀態 狀好,數珠珊瑚已開始在此建立小區域分布,114年的分布位置已較 明顯。植物種類之變化情形以草生植群樣區最大,海埔新生地北樣 區及海埔新生地南樣區,整體看來物種數有逐年穩定之現象,先驅 植物的競爭仍屬於常態,印度田菁在 114 年秋季顯著生長。台塑木 麻黃造林地 114 年秋季監測期間積水現象也常會使植被總數下降許 多,而到颱風的影響,使樣區的鬱閉度減少,地被植物有機會增加。 相較於喬木覆蓋之區域地被植物種類比草生地植物穩定度較高,環 境及氣候之影響不明顯,林下幼苗更新及生長未受干擾下已顯現自 然更新演替的趨向。造成植被景觀大幅度消失或改變的原因,人為 干擾及氣候的變化影響物種的分布與競爭。近 5 年的監測下已減少 有人為的干擾,目前植物變化主要是受到季節性與降水的氣候影響, 本監測配合農作物生長情形,釐清植物生長不良是自然的天候因素, 還是與離島產業園區營運有關,而監測至此仍屬與氣候變遷的強降 水與極端氣候相關。

(三)陸域生態監測結論

離島工業區進入營運階段後,調查範圍內動植物的變化主要受到天候影響及與本案營運無關的人為干擾。部分樣區因土地逐步開發,棲地縮減及環境污染導致對人為干擾耐受力較高的動物數量也開始減少,特別是棲息於淡水水域的兩棲類,其生存空間面臨水泥化、畜牧廢污或廢棄物污染而惡化,導致適合繁殖與棲息的淡水環境大幅減少;而近幾年頻繁發生的極端氣候事件更進一步加劇棲地的不穩定性。

與去年秋季相比,本季較明顯的負面差異是鳥類種類減少,以 及蝶類數量減少。鳥類種數減少的主因是可能是天候因素延遲了候 鳥抵台時間,以及炎熱天氣使空曠地的鳥類活動降低。蝶類數量減 少則可能是除草劑破壞了調查樣區植被,特別是蜜源植物減少。極 端氣候與氣候變遷對雲林沿海生態環境的影響仍在持續中。雖然現有的造林與耐旱植栽有助於改善微氣候,但人造林邊緣及荒地仍偶爾因民間或地方政府施用除草劑,導致植被多樣性與穩定性下降,且影響可能持續一年以上。為降低人為干擾與環境破壞,建議加強宣導與管理,提升棲地對極端氣候的緩衝能力,進而維護當地生物多樣性。

3.1.6 地下水水質

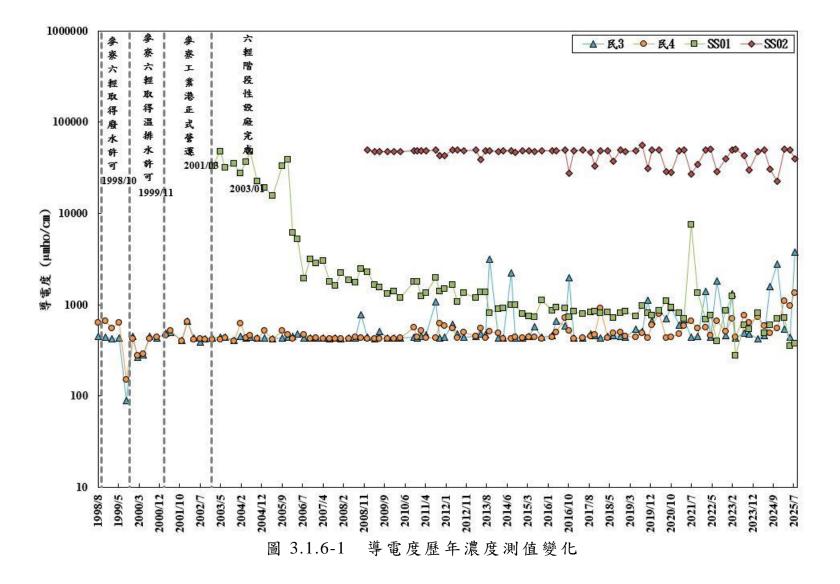
一、與歷次監測結果比對

各井近5年的地下水質調查結果與法規限值之比較,列表於附錄四-6-表1至附錄四-6-表4。為了更明確的表現本區的水質變化,另將此區域重要檢測項目(導電度、總溶解固體物、氣鹽、氟鹽、氨氮、錳、鐵及鉛)之歷年濃度測值變化繪製成圖(如圖3.1.6-1至圖3.1.6-8所示),以比較其趨勢變化狀況。

導電度係表示水的導電性質,間接與水中總溶解固體物含量變化呈正比。一般海水的導電度約在 40000 μmho/cm,長期監測調查沿海地區地下水之導電度值,可作為海水入侵與否之參考。總溶解固體量係指水中溶解礦物質的含量,一般主要包括碳酸氫根離子、氯鹽、硫酸鹽、鈣、鎂、鈉、鉀等無機鹽及少量可溶性之有機物質。

SS01 監測井由 92 年至 94 年底檢驗數據顯示,歷次導電度測值介於 $10000\sim50000~\mu$ mho/cm 之間,然自 98 年迄今已下降至 $2000~\mu$ mho/cm 以下,且無上升情形發生,顯示 SS01 受到長期降雨入滲之影響,水質已淡化。

SS02 監測井係於 98 年設置於新興區以東之既有台西海埔地內,其歷年來導電度測值多高於 40000 μ mho/cm,接近於海水之導電度值。且水位觀測資料顯示,監測井 SS02 水位常有低於零水位線(海水位)的現象發生,研判此區存在海水侵入之情形,故鹽化指標高。


民 3、民 4、SS01、SS02 等 4 口井之氨氮常有超過地下水監測標準情形。本區位於濁水溪沖積扇沿海及河川下游部份,沖積扇內畜牧養殖魚業興盛,農業活動之氮肥及養殖漁業魚貝類排泄物及餌料,皆可能導致氮污染垂直入滲進而影響地下水水質。

重金屬方面,SS01、SS02 及民 3 之鐵、錳測項常有超過監測標準情形。鐵及錳為岩石及土壤的組成成分之一,由於地下水與地層礦物之交互作用,致使鐵與錳含量於地下水會有較高的趨勢。另外,113 年第1 季 SS01 監測井之重金屬鉛測項超過管制標準,經比對重金屬鉛之歷年測值,發現於 102 年 12 月 18 日修正地下水污染管制標準以前,重金屬鉛測值亦偶有超出現行法規管制標準(0.1 mg/L)情形,顯示地下水中可能存在含鉛之礦物性懸浮固體,經加酸保存後溶出至樣品中致測值偏高,惟當時(102 年 12 月 18 日以前)鉛之監測標準為 0.25 mg/L,管制標準為 0.5 mg/L,雖有測值偏高情形,但仍符合當時之法規標準。重金屬鉛之歷年測值均未超過監測標準,僅 113 年第 1 季超過管制標

準,但113年第2季至114年第2季均符合監測標準,推測係屬偶發事件,後續將再持續監測追蹤。其餘重金屬項目與歷次無異,皆符合法規規定,且部分檢測項目在偵測極限以下。

二、監測結果綜合檢討分析

- 1. 導電度檢測:監測井 SS01 之在調查初期(92 年)濃度偏高數據變動較大,然自 95 年起即有顯著下降之趨勢,近年鹽化指標超過監測標準,且無上升情形發生,顯示 SS01 受到長期降雨沖淋之影響,水質已淡化。
- 2. 監測井 SS02 之鹽化指標偏高且水位觀測資料顯示,研判係因其設置 於新興區以東之既有台西海埔地內,其土壤富含鹽鹼,故鹽化指標高。
- 3. SS01、SS02 及民 3 監測井皆有氨氮濃度偏高的情形,可能是因雲林縣沿海區域畜牧養殖漁業等一級產業興盛,受到養殖廢水及養殖飼料的氮污染影響,且部分養殖業大量抽取地下水,易導致氮污染物直接藉由土壤及附近的河川,入滲至地下水體,因此地下水質氨氮濃度偏高且變動大。
- 4. 重金屬方面: SS01 及 SS02 地下水鐵、錳含量常有超過監測標準的情形,由於鐵、錳為岩石及土壤的組成成分之一,因此,此現象應與當地地質環境有關。其他重金屬項目與歷次無相異,皆符合規定,且部分檢測項目在偵測極限以下; SS01 鉛測項於 113 年第 1 季超過管制標準,113 年第 2 季至本季皆符合監測標準,推測應為偶發事件。

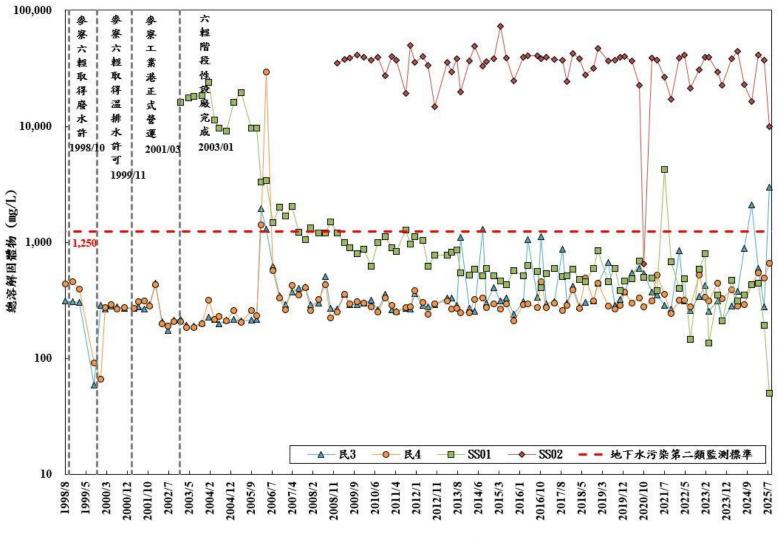


圖 3.1.6-2 總溶解固體物歷年濃度測值變化

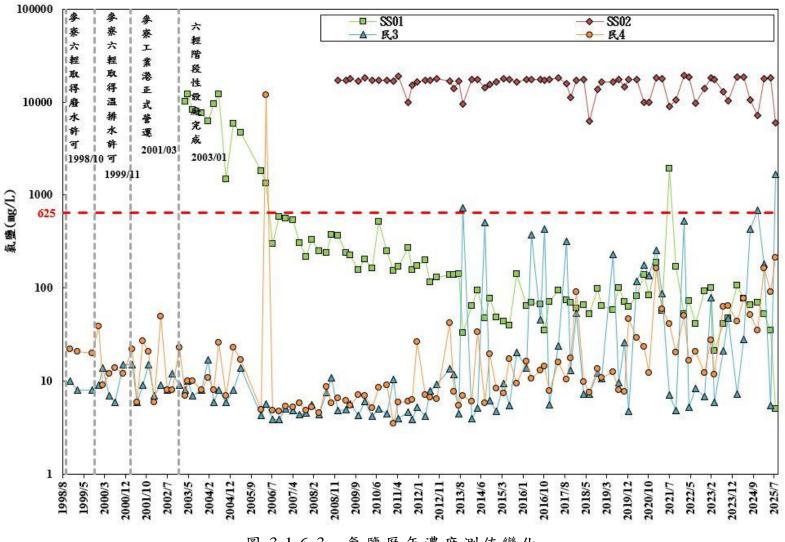


圖 3.1.6-3 氯鹽歷年濃度測值變化

圖 3.1.6-4 氟鹽歷年濃度測值變化 (環境部於 102 年 12 月 18 日修正發布氟鹽之監測標準及管制標準)

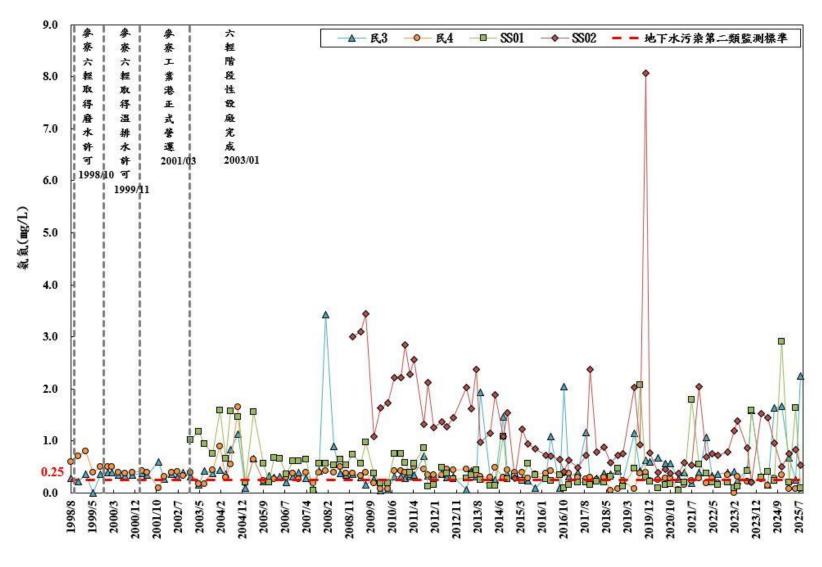


圖 3.1.6-5 氨氮歷年濃度測值變化

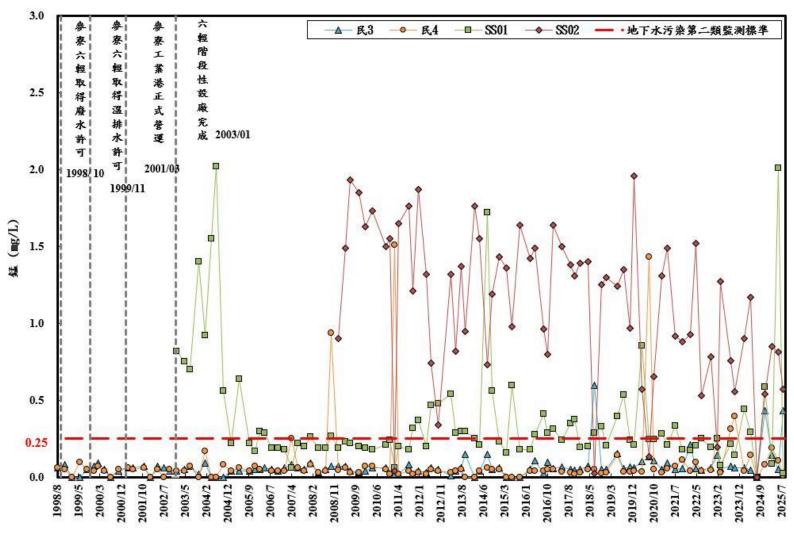


圖 3.1.6-6 錳歷年濃度測值變化

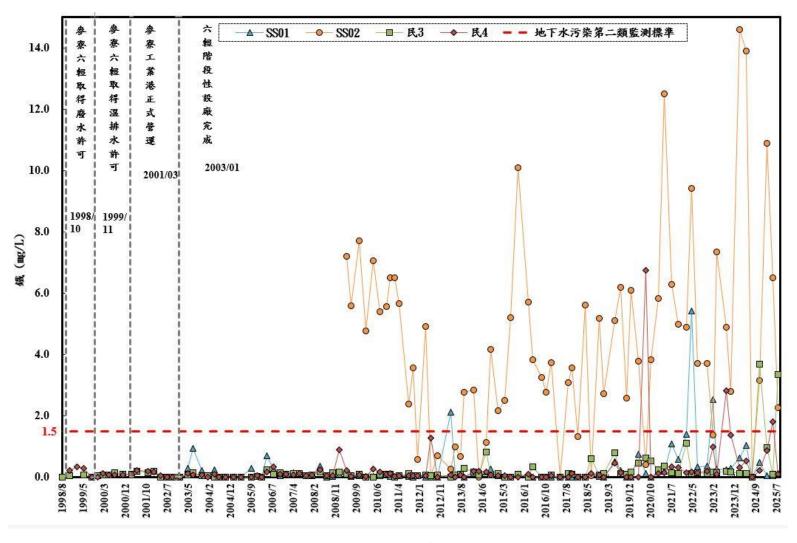


圖 3.1.6-7 鐵歷年濃度測值變化